Abstract:
A high level of survivability is important to protect military personnel and equipment and is
central to UK defence policy. Integrated Survivability is the systems engineering
methodology to achieve optimum survivability at an affordable cost, enabling a mission to
be completed successfully in the face of a hostile environment. “Integrated Helicopter
Survivability” is an emerging discipline that is applying this systems engineering approach
within the helicopter domain. Philosophically the overall survivability objective is ‘zero
attrition’, even though this is unobtainable in practice.
The research question was: “How can helicopter survivability be assessed in an integrated
way so that the best possible level of survivability can be achieved within the constraints and
how will the associated methods support the acquisition process?”
The research found that principles from safety management could be applied to the
survivability problem, in particular reducing survivability risk to as low as reasonably
practicable (ALARP). A survivability assessment process was developed to support this
approach and was linked into the military helicopter life cycle. This process positioned the
survivability assessment methods and associated input data derivation activities.
The system influence diagram method was effective at defining the problem and capturing
the wider survivability interactions, including those with the defence lines of development
(DLOD). Influence diagrams and Quality Function Deployment (QFD) methods were
effective visual tools to elicit stakeholder requirements and improve communication across
organisational and domain boundaries.
The semi-quantitative nature of the QFD method leads to numbers that are not real. These
results are suitable for helping to prioritise requirements early in the helicopter life cycle, but
they cannot provide the quantifiable estimate of risk needed to demonstrate ALARP. The probabilistic approach implemented within the Integrated Survivability Assessment
Model (ISAM) was developed to provide a quantitative estimate of ‘risk’ to support the
approach of reducing survivability risks to ALARP. Limitations in available input data for
the rate of encountering threats leads to a probability of survival that is not a real number that
can be used to assess actual loss rates. However, the method does support an assessment
across platform options, provided that the ‘test environment’ remains consistent throughout
the assessment. The survivability assessment process and ISAM have been applied to an
acquisition programme, where they have been tested to support the survivability decision
making and design process.
The survivability ‘test environment’ is an essential element of the survivability assessment
process and is required by integrated survivability tools such as ISAM. This test
environment, comprising of threatening situations that span the complete spectrum of
helicopter operations requires further development. The ‘test environment’ would be used
throughout the helicopter life cycle from selection of design concepts through to test and
evaluation of delivered solutions. It would be updated as part of the through life capability
management (TLCM) process.
A framework of survivability analysis tools requires development that can provide
probabilistic input data into ISAM and allow derivation of confidence limits. This systems
level framework would be capable of informing more detailed survivability design work
later in the life cycle and could be enabled through a MATLAB® based approach.
Survivability is an emerging system property that influences the whole system capability.
There is a need for holistic capability level analysis tools that quantify survivability along
with other influencing capabilities such as: mobility (payload / range), lethality, situational
awareness, sustainability and other mission capabilities.
It is recommended that an investigation of capability level analysis methods across defence
should be undertaken to ensure a coherent and compliant approach to systems engineering
that adopts best practice from across the domains. Systems dynamics techniques should be
considered for further use by Dstl and the wider MOD, particularly within the survivability
and operational analysis domains. This would improve understanding of the problem space,
promote a more holistic approach and enable a better balance of capability, within which
survivability is one essential element.
There would be value in considering accidental losses within a more comprehensive
‘survivability’ analysis. This approach would enable a better balance to be struck between
safety and survivability risk mitigations and would lead to an improved, more integrated
overall design.