CERES > School of Applied Sciences (SAS) (2006-July 2014) > Staff publications - School of Applied Sciences >

Please use this identifier to cite or link to this item: http://dspace.lib.cranfield.ac.uk/handle/1826/6321

Document Type: Article
Title: The water relations and irrigation requirements of sugar cane (Saccharum officinarum): a review.
Authors: Carr, M. K. V.
Knox, Jerry W.
Issue Date: 2011
Citation: M. K. V. Carr and J. W. Knox, The water relations and irrigation requirements of sugar cane (Saccharum officinarum): a review, Experimental Agriculture, January 2011, Volume 47, Issue 1, Pages 1-25.
Abstract: The results of research on the water relations and irrigation needs of sugar cane are collated and summarized in an attempt to link fundamental studies on crop physiology to irrigation practices. Background information on the centres of production of sugar cane is followed by reviews of (1) crop development, including roots; (2) plant water relations; (3) crop water requirements; (4) water productivity; (5) irrigation systems and (6) irrigation scheduling. The majority of the recent research published in the international literature has been conducted in Australia and southern Africa. Leaf/stem extension is a more sensitive indicator of the onset of water stress than stomatal conductance or photosynthesis. Possible mechanisms by which cultivars differ in their responses to drought have been described. Roots extend in depth at rates of 5-18 mm d- 1 reaching maximum depths of > 4 m in ca. 300 d providing there are no physical restrictions. The Penman-Monteith equation and the USWB Class A pan both give good estimates of reference crop evapotranspiration (ETo). The corresponding values for the crop coefficient (Kc) are 0.4 (initial stage), 1.25 (peak season) and 0.75 (drying off phase). On an annual basis, the total water-use (ETc) is in the range 1100-1800 mm, with peak daily rates of 6-15 mm d-1. There is a linear relationship between cane/sucrose yields and actual evapotranspiration (ETc) over the season, with slopes of about 100 (cane) and 13 (sugar) kg (ha mm)-1 (but variable). Water stress during tillering need not result in a loss in yield because of compensatory growth on re-watering. Water can be withheld prior to harvest for periods of time up to the equivalent of twice the depth of available water in the root zone. As alternatives to traditional furrow irrigation, drag- line sprinklers and centre pivots have several advantages, such as allowing the application of small quantities of water at frequent intervals. Drip irrigation should only be contemplated when there are well-organized management systems in place. Methods for scheduling irrigation are summarized and the reasons for their limited uptake considered. In conclusion, the ‘drivers for change', including the need for improved environmental protection, influencing technology choice if irrigated sugar cane production is to be sustainable are summarize
URI: http://dx.doi.org/10.1017/S0014479710000645
Appears in Collections:Staff publications - School of Applied Sciences

Files in This Item:

File Description SizeFormat
Carr and Knox_ExpAgr2011.pdf156.04 kBAdobe PDFView/Open

SFX Query

Items in CERES are protected by copyright, with all rights reserved, unless otherwise indicated.