Development of sensors for the detection of clinically relevant substances using molecular imprinting

Show simple item record

dc.contributor.advisor Piletsky, Sergey A.
dc.contributor.advisor Laitenberger, Peter
dc.contributor.author Fowler, Steven A.
dc.date.accessioned 2011-07-11T15:16:38Z
dc.date.available 2011-07-11T15:16:38Z
dc.date.issued 2009
dc.identifier.uri http://dspace.lib.cranfield.ac.uk/handle/1826/5665
dc.description.abstract This thesis investigates the development of sensing devices based on molecularly imprinted polymers for the detection of clinically relevant analytes. Three analytes were considered, metronidazole, creatinine and propofol. A molecularly imprinted polymer (MIP) was computationally designed for metronidazole and tested using SPE techniques. This polymer was then grafted onto a transducer surface using an immobilised initiator. Amperometric and impedance detection of metronidazole were investigated. The capacitive detection of creatinine was reproduced from the literature (Panasyuk- Delaney et al., 2002) as this approach could be applied to other MIPs to form a universal platform for sensor development. However, the sensors produced using this methodology were difficult to reproduce and attempts to improve them were unsuccessful. A model for capacitive electrodes was developed to explain the obtained results. To address the key challenges found in the aforementioned work, a dual polymerisable monomer was used as a conductive anchor for the amperometric and impedance detection of propofol. The developed amperometric sensors demonstrated very high sensitivity (limit of detection was below 5 µM), although the electrodes lacked in selectivity. In conclusion, this thesis illustrates some of the key areas which need to be considered in the development of MIP-based devices and investigates some innovative solutions to these problems. en_UK
dc.language.iso en en_UK
dc.publisher Cranfield University en_UK
dc.rights © Cranfield University, 2009. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder. en_UK
dc.title Development of sensors for the detection of clinically relevant substances using molecular imprinting en_UK
dc.type Thesis or dissertation en_UK
dc.type.qualificationlevel Doctoral en_UK
dc.type.qualificationname PhD en_UK


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


Browse

My Account

Statistics