A study of fatigue crack propagation in quenched and tempered and controlled rolled HSLA steels.

Show simple item record

dc.contributor.advisor Billingham, J.
dc.contributor.advisor Hockenhull, B. S.
dc.contributor.author Callister, D. R.
dc.date.accessioned 2010-06-16T15:18:02Z
dc.date.available 2010-06-16T15:18:02Z
dc.date.issued 1987-09
dc.identifier.uri http://hdl.handle.net/1826/4444
dc.description.abstract A range of HSLA steels reflecting the two major processing routes, quench and tempering and controlled rolling, have been tested in fatigue to assess their potential wider application in the offshore Industry. The six steels chosen have a wide range of yield strenghts (470 to 690Nmm-2), fracture toughness (31 to 260J at -40°C) and carbon equivalent values (0.19 to 0.33). Fatigue testing has in general been carried out at low frequency (0.5Hz) and high load ratio (0.6) however some tests have been conducted at very low frequency (0.1Hz) and low load ratio (0.1). An in-air study was first used to assess the fatigue performance of all six parent plates. Five steels were welded by the Submerged Arc Welding process at high heat input (1.5kJmm -1) to evaluate the Heat Affected Zone (HAZ) fatigue performance. A new test was devised to grow a fatigue crack through a single pass, bead on plate-, HAZ whilst maintaining a constant stress intensity range. The surface crack length was continuously monitored and recorded to an accuracy of 0.01mm. A corrosion fatigue study evaluated the performance of one controlled rolled and one quenched and tempered steel at three levels of impressed current cathodic protection. Extensive metallographic examination was made to study the influence of microstructural features and types on fatigue crack propagation. Techniques used include optical microscopy, scanning electron microscopy, fatigue crack and surface replication and crack profile digitising. These techniques give an assessment of crack path deviation and branching, the influence of precipitates and inclusions, and an indication of the mode of fatigue crack propagation. The wide range of microalloyed HSLA steels tested have shown a significant improvement in fatigue crack propagation resistance over structural steels conforming to BS 4360 grade 50D. Typically an improvement by a factor of two has been observed. Whilst the observed increase in fatigue life was slightly reduced by high heat input welding the slope of the Paris curves remained unaffected thus indicating a similar stress intensity range sensitivity in the HAZ to that shown by the parent plate. The newly developed crack monitoring system coupled to a computer controlled fatigue testing machine has shown a wide variation in fatigue crack propagation rates through a heat affected zone microstructural gradient. Growth rates have increased by a factor of ten in localised coarse grained microstructural regions compared to the adjacent weld metal and outer heat affected zone. The corrosion fatigue study has also indicated that in general HSLA steels retain their superiour fatigue resistance compared to structural steels and in particular respond more favourably to cathodic protection. Both in-air and corrosion fatigue studies have indicated that the controlled rolled steel microstructures developed mainly for line pipe application has the greatest potential for increased use offshore. en_UK
dc.language.iso en en_UK
dc.publisher Cranfield University en_UK
dc.title A study of fatigue crack propagation in quenched and tempered and controlled rolled HSLA steels. en_UK
dc.type Thesis or dissertation en_UK
dc.type.qualificationlevel Doctoral en_UK
dc.type.qualificationname PhD en_UK

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


My Account