Development of a rubber toughened epoxy adhesive loaded with carbon nanotubes, for aluminium – polymer bonds

Show simple item record

dc.contributor.advisor Partridge, Ivana K. Salinas-Ruiz , Maria del Mar 2010-05-12T10:30:07Z 2010-05-12T10:30:07Z 2009-06
dc.description.abstract This thesis describes the formulation of a ternary thermosetting adhesive which consists of a diglycidyl ether of bisphenol-A (DGEBA) epoxy resin cured with 3,3’-diamino diphenyl sulphone (3,3’-DDS) hardener and modified through the addition of carboxyl- terminated butadiene-acrylonitrile (CTBN) rubber and multi-walled carbon nanotubes (MWCNTs). Processing implications of the novel adhesive in the film form are considered in order to manufacture bonded specimens for characterisation of the adhesive performance in structural joints. The ternary blend which represents the novel adhesive formulation is also characterised in bulk form. The cure kinetics behaviour of the novel ternary blend is investigated using differential scanning calorimetry which shows 10% reduction in the total reactivity, and therefore reduced final crosslinking density, with the addition of the carbon nanotubes. A cure kinetics model is developed for the novel ternary thermoset. From characterisation of cast samples, a toughening effect of the phase separated rubber particles is observed, from 144 to 317 J/m 2 , with a further increase to 551 J/m 2 in the presence of the carbon nanotubes. In the absence of rubber, the nanotubes alone produce a minimal effect upon the thermo-mechanical and mechanical characteristics of the resin. The morphology of the cured material is affected by the presence of the nanoparticles, resulting in the reduction of the mean rubber particle size from 3µm to below 1µm. The electrical conductivity of the cured resin samples is found to increase by six orders of magnitude, up to 3.6 x10 -3 S/m in the ternary blend for a low carbon nanotube concentration of 0.3 wt%. DCB and ELS tests are used to study the performance of the novel adhesive in a joint configuration. The adhesive joint strength is dependent on the substrate type as well as on the surface preparation. The novel adhesive is also examined under fatigue in a ‘bonded crack retarder’ application. en_UK
dc.language.iso en en_UK
dc.publisher Cranfield University en_UK
dc.rights © Cranfield University, 2009. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder en_UK
dc.title Development of a rubber toughened epoxy adhesive loaded with carbon nanotubes, for aluminium – polymer bonds en_UK
dc.type Thesis or dissertation en_UK
dc.type.qualificationlevel Doctoral en_UK
dc.type.qualificationname PhD en_UK

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


My Account