CERES > School of Applied Sciences (SAS) (2006-July 2014) > PhD, EngD and MSc by research theses (School of Applied Sciences) >

Please use this identifier to cite or link to this item: http://dspace.lib.cranfield.ac.uk/handle/1826/3485

Document Type: Thesis or dissertation
Title: A Critical Evaluation of Remote Sensing Based Land Cover Mapping Methodologies
Authors: Farmer, Elizabeth A.
Supervisors: Sannier, C.
Brewer, Tim R.
Issue Date: 5-Jun-2008
Abstract: A novel, disaggregated approach to land cover survey is developed on the basis of land cover attributes; the parameters typically used to delineate land cover classes. The recording of land cover attributes, via objective measurement techniques, is advocated as it eliminates the requirement for surveyors to delineate and classify land cover; a process proven to be subjective and error prone. Within the North York Moors National Park, a field methodology is developed to characterise five attributes: species composition, cover, height, structure and density. The utility of land cover attributes to act as land cover ‘building blocks’ is demonstrated via classification of the field data to the Monitoring Landscape Change in the National Parks (MLCNP), National Land Use Database (NLUD) and Phase 1 Habitat Mapping (P1) schemes. Integration of the classified field data and a SPOT5 satellite image is demonstrated within per-pixel and object-orientated classification environments. Per-pixel classification produced overall accuracies of 81%, 80% and 76% at the field samples for the MLCNP, NLUD and P1 schemes, respectively. However, independent validation produced significantly lower accuracies. These decreases are demonstrated to be a function of sample fraction. Object-orientated classification, exemplified for the MLCNP schema at 3 segmentation scales, achieved accuracies approaching 75%. The aggregation of attributes to classes underutilises the potential of the remotely sensed data to describe landscape variability. Consequently, classification and geostatistical techniques capable of land cover attribute parameterisation, across the study area, are reviewed and exemplified for a sub-pixel classification. Land cover attributes provide a flexible source of field data which has been proven to support multiple land cover classification schemes and classification scales (sub-pixel, pixel and object). This multi-scaled/schemed approach enables the differential treatment of regions, within the remote sensing image, as a function of landscape characteristics and the users’ requirements providing a flexible mapping solution.
URI: http://hdl.handle.net/1826/3485
Appears in Collections:PhD, EngD and MSc by research theses (School of Applied Sciences)

Files in This Item:

File Description SizeFormat
Farmer_Thesis_2008.pdf29.04 MBAdobe PDFView/Open

SFX Query

Items in CERES are protected by copyright, with all rights reserved, unless otherwise indicated.