Modelling & integration of advanced propulsion systems

Show simple item record

dc.contributor.advisor Pilidis, Pericles
dc.contributor.author Doulgeris, Georgios C.
dc.date.accessioned 2008-07-28T09:39:27Z
dc.date.available 2008-07-28T09:39:27Z
dc.date.issued 2008-03
dc.identifier.uri http://hdl.handle.net/1826/2812
dc.description.abstract This research study focuses on the design of advanced propulsion cycles, having as primary design goal the improvement on noise emissions and fuel consumption. In this context, a preliminary cycle design method has been developed and applied on four novel propulsion systems; ultra high bypass ratio, recuperated, intercooled-recuperated, constant volume combustion turbofans. The analysis has shown significant improvement in jet noise, and fuel consumption, as a result of high bypass ratio. Additionally, a comparison to future fuel-optimised cycle has revealed the trade-off between noise emissions and fuel consumption, where a reduction of ~30dBs in jet noise may be achieved in the expense of ~10% increase of mission fuel. A second aspect of this study is the integration of the propulsion system for improving fan noise. A novel approach is followed, by half-embedding the turbofan in the upper surface of the wing of a Broad Delta airframe. Such an installation aids in noise reduction, by providing shielding to component (fan) noise. However, it leads to significant inlet distortion levels. In order to assess the effect of installation-born distortion on performance an enhanced fan representation model has been developed, able to predict fan and overall engine performance sensitivity to three-dimensional distorted inlet flow. This model that comprises parallel compressor theory and streamline curvature compressor modelling, has been used for proving a linear relation between the loss in fan stability margins and engine performance. In this way, the design engineer can take into consideration distortion effects on off-design performance, as early as, at the stage of preliminary cycle design. en_UK
dc.language.iso en en_UK
dc.publisher Cranfield University en_UK
dc.rights © Cranfield University 2008. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. en_UK
dc.title Modelling & integration of advanced propulsion systems en_UK
dc.type Thesis or dissertation en_UK
dc.type.qualificationlevel Doctoral en_UK
dc.type.qualificationname PhD en_UK


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


Browse

My Account

Statistics