Gas turbine combustor modelling for design

Show simple item record

dc.contributor.advisor Singh, R.
dc.contributor.author Murthy, J. N.
dc.date.accessioned 2008-06-13T10:26:21Z
dc.date.available 2008-06-13T10:26:21Z
dc.date.issued 1988-02
dc.identifier.uri http://hdl.handle.net/1826/2626
dc.description.abstract The design and development of gas turbine combustors is a crucial but uncertain part of an engine development process. Combustion within a gas turbine is a complex interaction of, among other things, fluid dynamics, heat and mass transfer and chemical kinetics. At present, the design process relies upon a wealth of experimental data and correlations. The proper use of this information requires experienced combustion engineers and even for them the design process is very time consuming. Some major engine manufacturers have attempted to address the above problem by developing one dimensional computer programs based on the above test and empirical data to assist combustor designers. Such programs are usually proprietary. The present work, based on this approach has yielded DEPTH, a combustor design program. DEPTH ( Design and Evaluation of Pressure, Temperature and Heat transfer in combustors) is developed in Fortran-77 to assist in preliminary design and evaluation of conventional gas turbine combustion chambers. DEPTH can be used to carry out a preliminary design along with prediction of the cooling slots for a given metal temperature limit or to evaluate heat transfer and temperatures for an existing combustion chamber. Analysis of performance parameters such as efficiency, stability and NOx based on stirred reactor theories is also coupled. DEPTH is made sufficiently interactive/user-friendly such that no prior expertise is required as far as computer operation is concerned. The range of variables such as operating conditions, geometry, hardware, fuel type can all be effectively examined and their contribution towards the combustor performance studied. Such comprehensive study should provide ample opportunity for the designer to make the right decisions. It should also be an effective study aid. Returns in terms of higher thermal efficiencies is an incentive to go for combined cycles and cogeneration. In such cases, opting for higher cycle pressures together with a second or reheat combustor promise higher thermal efficiencies and exhaust temperatures and hence such designs are likely to be of interest. The concepts that are needed for understanding a double or reheat combustor are also addressed using the programme. A specific application of the programme is demonstrated through the design of a double combustor. en_UK
dc.language.iso en en_UK
dc.publisher Cranfield University en_UK
dc.rights © Cranfield University, 1988. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. en_UK
dc.title Gas turbine combustor modelling for design en_UK
dc.type Thesis or dissertation en_UK
dc.type.qualificationlevel Doctoral en_UK
dc.type.qualificationname PhD en_UK


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


Browse

My Account

Statistics