Analysis of scaling relationships for flood parameters and peak discharge estimation in a tropical region

Date published

2024-01-23

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

IWA Publishing

Department

Type

Article

ISSN

1998-9563

Format

Citation

Mazivanhanga C, Grabowski R, Perez Sanchez E, Carballo Cruz VR. (2024) Analysis of scaling relationships for flood parameters and peak discharge estimation in a tropical region. Hydrology Research, Volume 55, Issue 2, February 2024, pp. 161-179

Abstract

Relationships between peak discharges and catchment size (e.g., flood scaling) in a catchment have the potential to support new river flood forecasting approaches but have not been tested in tropical regions. This study determined flood scaling relationships between peak discharge and nested drainage areas in the La Sierra catchment (Mexico). A statistical power law equation was applied to selected rainfall– runoff events that occurred between 2012 and 2015. Variations in flood scaling parameters were determined in relation to catchment descriptors and processes for peak downstream discharge estimation. Similar to studies in humid temperate regions, the results reveal the existence of log-linear relationships between the intercept (α) and exponent (θ) parameter values and the log–log power–law relationships between α and the peak discharge observed from the smallest headwater catchments. The flood parameter values obtained were then factored into the scaling equation (QP = αAθ) and successfully predicted downstream flood peaks, especially highly recurrent flood events. The findings contribute to a better understanding of the nature of flood wave generation and support the development of new flood forecasting approaches in unregulated catchments suitable for non-stationarity in hydrological processes with climate change.

Description

Software Description

Software Language

Github

Keywords

catchment area, flood forecasting, flood peak, hydrological scaling, rainfall event, streamflow response

DOI

Rights

Attribution 4.0 International

Relationships

Relationships

Resources

Funder/s