Automatic reconstruction of irregular shape defects in pulsed thermography using deep learning neural network

Date published

2022-07-25

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Department

Type

Article

ISSN

0941-0643

Format

Citation

Liu H, Li W, Yang L, et al., (2022) Automatic reconstruction of irregular shape defects in pulsed thermography using deep learning neural network. Neural Computing and Applications, Volume 34, Issue 24, December 2022, pp. 21701–21714

Abstract

Quantitative defect and damage reconstruction play a critical role in industrial quality management. Accurate defect characterisation in Infrared Thermography (IRT), as one of the widely used Non-Destructive Testing (NDT) techniques, always demands adequate pre-knowledge which poses a challenge to automatic decision-making in maintenance. This paper presents an automatic and accurate defect profile reconstruction method, taking advantage of deep learning Neural Networks (NN). Initially, a fast Finite Element Modelling (FEM) simulation of IRT is introduced for defective specimen simulation. Mask Region-based Convolution NN (Mask-RCNN) is proposed to detect and segment the defect using a single thermal frame. A dataset with a single-type-shape defect is tested to validate the feasibility. Then, a dataset with three mixed shapes of defect is inspected to evaluate the method’s capability on the defect profile reconstruction, where an accuracy over 90% on Intersection over Union (IoU) is achieved. The results are compared with several state-of-the-art of post-processing methods in IRT to demonstrate the superiority at detailed defect corners and edges. This research lays solid evidence that AI deep learning algorithms can be utilised to provide accurate defect profile reconstruction in thermography NDT, which will contribute to the research community in material degradation analysis and structural health monitoring.

Description

Software Description

Software Language

Github

Keywords

pulsed thermography, finite element modeling, defect reconstruction, deep learning

DOI

Rights

Attribution 4.0 International

Relationships

Relationships

Resources

Funder/s