Multi-fidelity combustor design and experimental test for a micro gas turbine system

Date

2022-03-23

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Department

Type

Article

ISSN

1996-1073

item.page.extent-format

Citation

Liu Y, Nikolaidis T, Hossein Madani S, et al., (2022) Multi-fidelity combustor design and experimental test for a micro gas turbine system, Energies, Volume 15, Issue 7, March 2022, Article number 2342

Abstract

A multi-fidelity micro combustor design approach is developed for a small-scale combined heat and power CHP system. The approach is characterised by the coupling of the developed preliminary design model using the combined method of 3D high-fidelity modelling and experimental testing. The integrated multi-physics schemes and their underlying interactions are initially provided. During the preliminary design phase, the rapid design exploration is achieved by the coupled reduced-order models, where the details of the combustion chamber layout, flow distributions, and burner geometry are defined as well as basic combustor performance. The high-fidelity modelling approach is then followed to provide insights into detailed flow and emission physics, which explores the effect of design parameters and optimises the design. The combustor is then fabricated and assembled in the MGT test bench. The experimental test is performed and indicates that the designed combustor is successfully implemented in the MGT system. The multi-physics models are then verified and validated against the test data. The details of refinement on lower-order models are given based on the insights acquired by high-fidelity methods. The shortage of conventional fossil fuels and the continued demand for energy supplies have led to the development of a micro-turbine system running renewable fuels. Numerical analysis is then carried out to assess the potential operation of biogas in terms of emission and performance. It produces less NOx emission but presents a flame stabilisation design challenge at lower methane content. The details of the strategy to address the flame stabilisation are also provided.

Description

item.page.description-software

item.page.type-software-language

item.page.identifier-giturl

Keywords

micro gas turbine, combustor, design, numerical analysis, experiment, performance

Rights

Attribution 4.0 International

item.page.relationships

item.page.relationships

item.page.relation-supplements