Deep learning methods for solving linear inverse problems: Research directions and paradigms
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
The linear inverse problem is fundamental to the development of various scientific areas. Innumerable attempts have been carried out to solve different variants of the linear inverse problem in different applications. Nowadays, the rapid development of deep learning provides a fresh perspective for solving the linear inverse problem, which has various well-designed network architectures results in state-of-the-art performance in many applications. In this paper, we present a comprehensive survey of the recent progress in the development of deep learning for solving various linear inverse problems. We review how deep learning methods are used in solving different linear inverse problems, and explore the structured neural network architectures that incorporate knowledge used in traditional methods. Furthermore, we identify open challenges and potential future directions along this research line.