Three-dimensional low-order surge model for high-speed axial compressors

Date

2020-07-21

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

Global Power and Propulsion Society

Department

Type

Conference paper

ISSN

2504-4400

item.page.extent-format

Citation

Righi M, Pachidis V, Könözsy L, et al., (2020) Three-dimensional low-order surge model for high-speed axial compressors. In: GPSS Global Power and Propulsion Chania 20 Technical Conference, Online, 7-9 September 2020

Abstract

Surge in modern aero-engines can lead to violent disruption of the flow, damage to the blade structures and eventually engine shutdown. Knowledge of unsteady performance and loading during surge is crucial for compressor design, however, the understanding and prediction capability for this phenomenon is still very limited. While useful for the investigation of specific cases, costly experimental tests and high-fidelity CFD simulations cannot be used routinely in the design process of compressor systems. There is therefore an interest in developing a low-order model which can predict compressor performance during surge with sufficient accuracy at significantly reduced computational cost. This paper describes the validation of an unsteady 3D through-flow code developed at Cranfield University for the low-order modelling of surge in axial compressors. The geometry investigated is an 8-stage rig representative of a modern aero-engine IP compressor. Two deep surge events are modelled at part speed and full speed respectively. The results are compared against high-fidelity, full annulus, URANS simulations conducted at Imperial College. Comparison of massflow, pressure and temperature time histories shows a close match between the low-order and the higher-fidelity methods. The low-order model is shown capable of predicting many transient flow features which were observed in the high-fidelity simulations, while reducing the computational cost by up to two orders of magnitude.

Description

item.page.description-software

item.page.type-software-language

item.page.identifier-giturl

Keywords

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

item.page.relationships

item.page.relationships

item.page.relation-supplements