Transient modelling and simulation of gas turbine secondary air system

Date

2020-02-03

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

1359-4311

Format

Citation

Nikolaidis T, Wang H, Laskaridis P. (2020) Transient modelling and simulation of gas turbine secondary air system. Applied Thermal Engineering, Volume 170, April 2020, Article number 115038

Abstract

The behaviour of the jet engine during transient operation and specifically its secondary air system (SAS) is the point of this work. This paper presents a methodological approach to develop a fast, one-dimensional transient platform for preliminary analysis of the flow behaviour in gas turbine engines secondary air system. For this purpose, different elements of the system including rotating chamber, pipe, turbine blade cooling, orifice, and labyrinth seal are modelled in a modular form. The validity of the developed models for each component is checked against experimental/publicly available data. Then, using a flow network simulation approach, the secondary air system of a two-spool turbofan engine is modelled and simulated in transient mode. The coupling effect between volume packing and swirl are considered in the simulation, under two pre-defined scenarios for step and scheduled boundary condition variations. In the step-change scenario, the boundary conditions are changed instantly to represent the flow behaviour of the SAS under extreme operating conditions (i.e. shaft fracture, flameout, etc.). In the scheduled scenario, the boundary conditions vary linearly with time to represent the performance of the SAS under normal operating conditions (i.e. acceleration and deceleration). The key findings include the fact that, under normal engine operation, the flow in the SAS varies smoothly and converges much faster than the primary flow by around one magnitude. Thus, it is reasonable to use steady-state SAS model to simulate SAS flow behaviour under these conditions. However, under extreme conditions (e.g. flameout), which could induce an abrupt change in the primary airflow properties (pressure, temperature), reverse airflow or choking conditions in SAS may be observed. This could result in a malfunction of the SAS, inducing further damages to the engine.

Description

Software Description

Software Language

Github

Keywords

Secondary air system, transient modelling and simulation, gas turbine engines, extreme operating conditions effects

DOI

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Relationships

Relationships

Supplements

Funder/s