Numerical investigation on heat transfer performance and flow characteristics in a roughened vortex chamber

Date published

2020-02-26

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

1359-4311

Format

Citation

Alhajeri HM, Almutairi A, Alenezi AH, Gamil AA. (2019) Numerical investigation on heat transfer performance and flow characteristics in a roughened vortex chamber. Applied Thermal Engineering, Volume 153, May 2019, pp. 58-68

Abstract

In this study, an investigation of a vortex chamber was carried out to gain a full understanding of the nature of the vortex flow and the cooling capability inside the chamber. The paper discusses the effects on flow and heat transfer rates when the inside surface of the vortex chamber was roughened by adding flow turbulators to its wall. The turbulators took the shape of a rib with a square cross-section, the dimension of which varied between 0.25 mm and 2.00 mm. The paper also presents the results of a comparative investigation of jet impingement and vortex cooling on a concave wall using different parameters, such as the total pressure loss coefficient, Nusselt number and thermal performance factor, to evaluate the cooling effectiveness and flow dynamics. Furthermore, the entropy generation in swirl flow with the roughened wall was assessed over a wide range of Reynolds numbers.

In this study, an investigation of a vortex chamber was carried out to gain a full understanding of the nature of the vortex flow and the cooling capability inside the chamber. The paper discusses the effects on flow and heat transfer rates when the inside surface of the vortex chamber was roughened by adding flow turbulators to its wall. The turbulators took the shape of a rib with a square cross-section, the dimension of which varied between 0.25 mm and 2.00 mm. The paper also presents the results of a comparative investigation of jet impingement and vortex cooling on a concave wall using different parameters, such as the total pressure loss coefficient, Nusselt number and thermal performance factor, to evaluate the cooling effectiveness and flow dynamics. Furthermore, the entropy generation in swirl flow with the roughened wall was assessed over a wide range of Reynolds numbers. The results show that surface roughness considerably influences the velocity distribution, heat transfer patterns and pressure drop in the vortex chamber. The highest thermal performance factor takes place at rib heights of 0.25 mm and 0.50 mm with a low Re number. Further increase in rib height has an adverse impact on thermal performance. At a Reynolds number lower than 50,000, it is highly recommended to use roughened vortex cooling to obtain the best thermal performance.

Description

Software Description

Software Language

Github

Keywords

Vortex chamber, Entropy, Nusselt number, Impingement, Roughened surface

DOI

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Relationships

Relationships

Supplements

Funder/s