Comparison of sequential and integrated optimisation approaches for ASP and ALB

Date

2017-07-11

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

2212-8271

Format

Citation

M.F.F. Ab Rashid, A. Tiwari, W. Hutabarat, Comparison of Sequential and Integrated Optimisation Approaches for ASP and ALB, Procedia CIRP, Volume 63, 2017, Pages 505-510

Abstract

Combining Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) is now of increasing interest. The customary approach is the sequential approach, where ASP is optimised before ALB. Recently, interest in the integrated approach has begun to pick up. In an integrated approach, both ASP and ALB are optimised at the same time. Various claims have been made regarding the benefits of integrated optimisation compared with sequential optimisation, such as access to a larger search space that leads to better solution quality, reduced error rate in planning and expedited product time-to-market. These benefits are often cited but no existing work has substantiated the claimed benefits by publishing a quantitative comparison between sequential and integrated approaches. This paper therefore compares the sequential and integrated optimisation approaches for ASP and ALB using 51 test problems. This is done so that the behaviour of each approach in optimising ASP and ALB problems at different difficulty levels can be properly understood. An algorithm named Multi-Objective Discrete Particle Swarm Optimisation (MODPSO) is applied in both approaches. For ASP, the optimisation results indicate that the integrated approach is suitable to be used in small and medium-sized problems, according to the number of non-dominated solution and error ratio indicators. Meanwhile, the sequential approach converges more quickly in large-sized problems. For pure ALB, the integrated approach is preferable in all cases. When both ASP and ALB are considered, the integrated approach is superior to the sequential approach.

Description

Software Description

Software Language

Github

Keywords

Assembly sequence planning, assembly line balancing, integrated optimisation, sequential optimisation

DOI

Rights

Attribution-Non-Commercial-No Derivatives 4.0 (CC BY-NC-ND 4.0). You are free to: Share — copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. Information: Non-Commercial — You may not use the material for commercial purposes. No Derivatives — If you remix, transform, or build upon the material, you may not distribute the modified material. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Relationships

Relationships

Supplements