Diagnosis of low-speed bearing degradation using acoustic emission techniques

Show simple item record

dc.contributor.advisor Addali, Abdulmajid
dc.contributor.advisor Amaral Teixeira, Joao
dc.contributor.author Alshimmeri, Fiasael
dc.date.accessioned 2017-08-16T13:22:33Z
dc.date.available 2017-08-16T13:22:33Z
dc.date.issued 2017-01
dc.identifier.uri http://dspace.lib.cranfield.ac.uk/handle/1826/12324
dc.description.abstract It is widely acknowledged that bearing failures are the primary reason for breakdowns in rotating machinery. These failures are extremely costly, particularly in terms of lost production. Roller bearings are widely used in industrial machinery and need to be maintained in good condition to ensure the continuing efficiency, effectiveness, and profitability of the production process. The research presented here is an investigation of the use of acoustic emission (AE) to monitor bearing conditions at low speeds. Many machines, particularly large, expensive machines operate at speeds below 100 rpm, and such machines are important to the industry. However, the overwhelming proportion of studies have investigated the use of AE techniques for condition monitoring of higher-speed machines (typically several hundred rpm, or even higher). Few researchers have investigated the application of these techniques to low-speed machines (<100 rpm), This PhD addressed this omission and has established which, of the available, AE techniques are suitable for the detection of incipient faults and measurement of fault growth in low-speed bearings. The first objective of this research program was to assess the applicability of AE techniques to monitor low-speed bearings. It was found that the measured statistical parameters successfully monitored bearing conditions at low speeds (10-100 rpm). The second objective was to identify which commonly used statistical parameters derived from the AE signal (RMS, kurtosis, amplitude and counts) could identify the onset of a fault in either race. It was found that the change in AE amplitude and AE RMS could identify the presence of a small fault seeded into either the inner or the outer races. However, the severe attenuation of the signal from the inner race meant that, while AE amplitude and RMS could readily identify the incipient fault, kurtosis and the AE counts could not. Thus, more attention needs to be given to analysing the signal from the inner race. The third objective was to identify a measure that would assess the degree of severity of the fault. However, once the defect was established, it was found that of the parameters used only AE RMS was sensitive to defect size. The fourth objective was to assess whether the AE signal is able to detect defects located at either the centre or edge of the outer race of a bearing rotating at low speeds. It is found that all the measured AE parameters had higher values when the defect was seeded in the middle of the outer race, possibly due to the shorter path traversed by the signal between source and sensor which gave a lower attenuation than when the defect was on the edge of the outer race. Moreover, AE can detect the defect at both locations, which confirmed the applicability of the AE to monitor the defects at any location on the outer race. en_UK
dc.publisher Cranfield University en_UK
dc.rights © Cranfield University, 2017. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder. en_UK
dc.subject Condition monitoring en_UK
dc.subject low-speed bearing en_UK
dc.subject acoustic emission en_UK
dc.subject vibration analysis en_UK
dc.subject signal processing en_UK
dc.subject statistical parameters en_UK
dc.title Diagnosis of low-speed bearing degradation using acoustic emission techniques en_UK
dc.type Thesis or dissertation en_UK
dc.type.qualificationlevel Doctoral en_UK
dc.type.qualificationname PhD en_UK

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


My Account