Upper limits on the stochastic gravitational-wave background from Advanced LIGO’s first observing run

Date published

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society

Department

Type

Article

ISSN

Format

Citation

Abbott, BP., et al., (LIGO Scientific Collaboration and Virgo Collaboration). Upper limits on the stochastic gravitational-wave background from Advanced LIGO’s first observing run. Physical Review Letters, 118(12), 121101 (2017)

Abstract

A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory’s (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω 0 < 1.7 × 10 − 7 with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20–86 Hz). This is a factor of ∼ 33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.

Description

Software Description

Software Language

Github

Keywords

DOI

Rights

© 2017 American Physical Society. This is the publisher Version of Record Manuscript. Please refer to any applicable publisher terms of use.

Relationships

Relationships

Supplements

Funder/s