Comparative analysis of forward-facing models vs backward-facing models in powertrain component sizing
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Powertrain size optimisation based on vehicle class and usage profile is advantageous for reducing emissions. Backward-facing powertrain models, which incorporate scalable powertrain components, have often been used for this purpose. However, due to their quasi-static nature, backward-facing models give very limited information about the limits of the system and drivability of the vehicle. This makes it difficult for control system development and implementation in hardware-in-the-loop (HIL) test systems. This paper investigates the viability of using forward-facing models in the context of powertrain component sizing optimisation. The vehicle model used in this investigation features a conventional powertrain with an internal combustion engine, clutch, manual transmission, and final drive. Simulations that were carried out have indicated that there is minimal effect on the optimal cost with regards to variations in the driver model sensitivity. This opens up the possibility of using forward-facing models for the purpose of powertrain component sizing.