Citation:
Ying Liu and Ashutosh Tiwari. An investigation into minimising total energy consumption and total completion time in a flexible job shop for recycling carbon fiber reinforced polymer. Procedia CIRP, Volume 29, 2015, pp722-727
Abstract:
The increased use of carbon fiber reinforced polymer (CFRP) in industry coupled with European Union restrictions on landfill disposal has
resulted in a need to develop relevant recycling technologies. Several methods, such as mechanical grinding, thermolysis and solvolysis, have
been tried to recover the carbon fibers. Optimisation techniques for reducing energy consumed by above processes have also been developed.
However, the energy efficiency of recycling CFRP at the workshop level has never been considered before. An approach to incorporate energy
reduction into consideration while making the scheduling plans for a CFRP recycling workshop is presented in this paper. This research sets in
a flexible job shop circumstance, model for the bi-objective problem that minimise total processing energy consumption and makespan is developed.
A modified Genetic Algorithm for solving the raw material lot splitting problem is developed. A case study of the lot sizing problem
in the flexible job shop for recycling CFRP is presented to show how scheduling plans affect energy consumption, and to prove the feasibility
of the model and the developed algorithm.