Stall and surge in axial flow compressors

Show simple item record

dc.contributor.advisor Elder, R. L.
dc.contributor.advisor Howard, M.
dc.contributor.advisor Gallimore, S.
dc.contributor.author Wilson, Alexander George
dc.date.accessioned 2016-08-24T15:11:01Z
dc.date.available 2016-08-24T15:11:01Z
dc.date.issued 1996-09
dc.identifier.uri http://dspace.lib.cranfield.ac.uk/handle/1826/10432
dc.description.abstract The objective of the work described in this thesis is twofold; to elucidate the nature of stall and surge in an axial flow aeroengine compressor, and to improve on current computational stall modelling techniques. Particular attention is paid to the initial stages of the stall/surge transient, and to the possibility of using active control techniques to prevent or delay the onset of stall/surge. A detailed analysis is presented of measurements of the stalling behaviour of a Rolls- Royce VIPER jet engine, showing a wide variety of stall inception and post-stall behaviour. Stall transients are traced from disturbances through to stable rotating stall or axisymmetic surge. The stall inception pattern at nearly all speeds is shown to conform to the short circumferential length scale pattern described by Day [1993a]. A multiple compressors in parallel stall model is developed using conventional stall modelling techniques, but extended to include the effects of the jet engine environment The model is shown to give a good representation of the overall stalling behaviour of the engine, although the details of the stall inception period are not accurately predicted. A system identification technique is applied to the results of the model in order to develop a method of active control of stall/surge. A new stall model is introduced and developed, based on a time-accurate three dimensional (but pitchwise averaged) solution of the viscous flow equations, with bladerow performance represented by body forces. The flow in the annulus boundary layers is calculated directly, and hence this new method is sufficiently complex to model the initial localised disturbances that lead to stall/surge. At the same time the computational power required is compatible with application to long multistage compressors. en_UK
dc.language.iso en en_UK
dc.publisher Cranfield University en_UK
dc.rights © Cranfield University, 1996. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder. en_UK
dc.title Stall and surge in axial flow compressors en_UK
dc.type Thesis or dissertation en_UK
dc.type.qualificationlevel Doctoral en_UK
dc.type.qualificationname PhD en_UK


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


Browse

My Account

Statistics