Preliminary gas turbine combustor design using a network approach

Show simple item record

dc.contributor.advisor Rubini, Philip A.
dc.contributor.author Stuttaford, Peter J.
dc.date.accessioned 2006-04-21T10:58:03Z
dc.date.available 2006-04-21T10:58:03Z
dc.date.issued 1997-02
dc.identifier.uri http://hdl.handle.net/1826/1038
dc.description.abstract Gas turbine combustor design represents an ambitious task in numerical and experimental analysis. A significant number of competing criteria must be optimised within specified constraints in order to satisfy legislative and performance requirements. Currently, preliminary combustor flow and heat transfer design procedures, which by necessity involve semi-empirical models, are often restricted in their range of application. The objective of this work is the development of a versatile design tool able to model all conceivable gas turbine combustor types. A network approach provides the foundation for a complete flow and heat transfer analysis to meet this goal. The network method divides the combustor into a number of independent interconnected sub-flows. A pressure-correction methodology solves the continuity equation and a pressure-drop/flow-rate relationship. A constrained equilibrium calculation, incorporating mixing and recirculation models, simulates the combustion process. The new procedures are validated against numerical and experimental data within three annular combustors and one reverse flow combustor. A full conjugate heat transfer model is developed to allow the calculation of liner wall temperature characteristics. The effects of conduction, convection and radiation are included in the model. Film cooling and liner heat pick-up effects are included in the convection calculation. Radiation represents the most difficult mode of heat transfer to simulate in the combustion environment. A discrete transfer radiation model is developed and validated for use within the network solver. The effects of soot concentration on radiation is evaluated with the introduction of radial properties profiles. The accuracy of the heat transfer models are evaluated with comparisons to experimental thermal paint temperature data on a reverse flow and annular combustors. The resulting network analysis code represents a powerful design tool for the combustion engineer incoporating a novel and unique strategy. en
dc.format.extent 2403375 bytes
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher Cranfield University
dc.title Preliminary gas turbine combustor design using a network approach en
dc.type Thesis or dissertation en
dc.type.qualificationlevel Doctoral en
dc.type.qualificationname PhD en
dc.publisher.department School of Engineering en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


Browse

My Account

Statistics