Automotive, Energy and Photonics engineering
Browse
Browsing Automotive, Energy and Photonics engineering by Subject "4004 Chemical Engineering"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Fuelling hydrogen futures? A trust-based model of social acceptance(Royal Society of Chemistry (RSC), 2025) Gordon, Joel A.; Balta-Ozkan, Nazmiye; Haq, Anwar U. l.; Nabavi, Seyed AliPublic trust plays a fundamental role in shaping national energy policies in democratic countries, as exemplified by nuclear phase-out in Germany following the Fukushima accident. While trust dynamics have been explored in different contexts of the energy transition, few studies have attempted to quantify the influence of public trust in shaping social acceptance and adoption potential. Moreover, the interaction between public trust and perceived community benefits remains underexplored in the literature, despite the relevance of each factor to facilitating social acceptance and technology uptake. In response, this quantitative analysis closes a parallel research gap by examining the antecedents of public trust and perceived community benefits in the context of deploying hydrogen heating and cooking appliances across parts of the UK housing stock. Drawing on results from a nationally representative online survey (N = 1845), the study advances insights on the consumer perspective of transitioning to ‘hydrogen homes’, which emerged as a topical and controversial aspect of UK energy policy in recent years. Partial least squares structural equation modelling and necessary condition analysis are undertaken to assess the predictive capabilities of a trust-based model, which incorporates aspects of institutional, organisational, interpersonal, epistemic, and social trust. Regarding sufficiency-based logic, social trust is the most influential predictor of public trust, whereas trust in product and service quality corresponds to the most important necessary condition for enabling public trust. Nevertheless, trust in the government, energy sector, and entities involved in research & development are needed to facilitate and strengthen public trust. Overall, this study enriches scholarly understanding of how public trust may shape prospects for trialling novel low-carbon technologies, highlights the need for segment-specific consumer engagement, and advances scholarly understanding of the innovation-decision process in the context of net-zero pathways. As policymakers approach critical decisions on the portfolio of technologies needed to support residential decarbonisation, public trust will prove fundamental to fuelling hydrogen-based energy futures.Item Open Access Investigation of ash and combustion characteristics during co-combustion of coal and solid recovered fuel in a laboratory-scale combustor(Taylor & Francis, 2025) Prismantoko, Adi; Karuana, Feri; Prayoga, Moch Zulfikar Eka; Darmawan, Arif; Muflikhun, Muhammad Akhsin; Sunyoto, Nimas Mayang Sabrina; Zhu, Mingming; Aziz, Muhammad; Hariana, HarianaPopulation growth and limited landfill area increase the problems associated with municipal solid waste (MSW). The MSW conversion into solid recovered fuel (SRF) improves the calorific value which has the potential to be used as a power plant boiler fuel. This study investigates ash deposition and combustion characteristics during co-combustion of coal and SRF at various dosages (5, 10, 15, 20, and 25 wt%). Thermogravimetry analysis, preliminary risk assessment, and morphology analysis of ash deposits are comprehensively performed. The study reveals that based on combustion performance, SRF blends up to 20 wt% show slightly altered burnout temperatures compared to coal combustion, whereas, at 25 wt%, the combustion temperature increases significantly. On the initial risk assessment, the samples tested have a low to medium risk of slagging. Morphological observations show that fine, irregular, and unmelted particles dominate coal ash deposits, while SRF ash deposits are dominated by melted and agglomerated particles. The melted particles gradually increase as the dosage of SRF in the mixture increases. Low melting temperature element-rich particles start to be observed at doses higher than 10 wt%. At 25 wt% SRF blends, material degradation is observed with the presence of Cr in the ash deposit. Overall, co-combustion over 10 wt% SRF shows results that should be considered, particularly the increase in sintering ash that can cause problems in the boiler pipes. This study provides insight into the optimum dosage suitable for blending SRF and coal in power plant boilers.