Staff publications (AA)
Browse
Browsing Staff publications (AA) by Subject "4010 Engineering Practice and Education"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Adaptive UAV control with sensor and actuator faults recovery(MDPI, 2025-03-01) Bekhiti, Abdellah; Souanef, Toufik; Toubakh, Houari; Horri, Nadjim; Kafi, Mohamed Redouane; Bouzid, ZakariaThis paper presents an adaptive fault-tolerant control strategy tailored for fixed-wing unmanned aerial vehicles (UAV) operating under adverse conditions such as icing. Using radial basis function neural networks and nonlinear dynamic inversion, the proposed framework effectively handles simultaneous actuator and sensor faults with arbitrary nonlinear dynamics caused by environmental effects, model uncertainties and external disturbances. A nonlinear disturbance observer is incorporated for accurate sensor fault detection and estimation, thereby enhancing the robustness of the control system. The integration of the radial basis function neural network enables an adaptive estimation of the faults, ensuring accurate fault compensation and system stability under challenging conditions. The observer is optimised to minimise the deviation of the closed-loop dynamics eigenvalues from the assigned eigenvalues and to approach unity observer steady-state gain. The stability of the control architecture is mathematically proven using Lyapunov analysis, and the performance of the approach is validated through numerical simulations on a six Degrees of Freedom fixed-wing unmanned aerial vehicles model. The results show superior performance and robustness to challenging fault scenarios. This research provides a comprehensive fault management solution that enhances the safety and reliability of unmanned aircraft operations in extreme environments.Item Open Access Control allocation problem transformation approaches for over-actuated vectored thrust VTOLs(Elsevier, 2025-06-01) Enenakpogbe, Emmanuel; Whidborne, James F.; Lu, LinghaiOne main challenge of vectored thrust VTOLs is actuator thrust control saturation because it may lead to undesired behaviour and loss of control if the control channels are not prioritised. Another challenge of vectored thrust VTOLs is that the vectored thrust results in non-linear effector mapping preventing the direct use of standard linear control allocation approaches. Linear control allocation approaches have lower online computational and complexity burden, and have simplier requirements for fault tolerance and reconfigurability than nonlinear control allocation approaches. This paper proposes three real-time control allocation approaches for transforming a nonlinear control allocation problem to a linear problem so that classical linear control allocation approaches can then be used. The approaches which addresses the two main challenges of the particular VTOL configuration are then tested using three selected flight test manoeuvres on a generic over-actuated vectored thrust three degrees of freedom planar VTOL with no aerodynamics. The first approach transfers the non-linearity from the effector mapping to the computation of the actuator limits by formulating the real controls in cartesian form and then converts the physical actuator limits from polar to cartesian form. The second approach transforms the non-linear effector mapping to a linear mapping via numerical linearisation of the non-linear effector mapping in real-time. The third approach is similar to second approach except an extra step which transforms the virtual controls from cartesian to polar before performing an analytical linearisation resulting in a different and more complicated linear Effector mapping. The results demonstrate the effectiveness of the proposed control allocation schemes to allocate remaining control authority to higher priority and critical control channels in order to maintain operational safety and stability during certain flight conditions while there is limited control authority.Item Open Access Digital Twin-Based Health Management for Complex Aircraft Systems: Case Studies and Applications(IEEE, 2025-03-24) Wang, Chengwei; Fan, Ip-Shing; Plastropoulos, AngelosDigital Twin technology, initially conceptualized during the NASA's Apollo program, has evolved into a transformative tool for system health management, particularly in aviation. By integrating high-fidelity simulations, real-time sensor data, and predictive analytics, DTs enable significant innovation in Prognostics and Health Management methods. This paper explores the application of DTs in health management for complex aircraft systems, focusing on two critical subsystems: Flight Control Electrical Actuators and Main Landing Gear. Leveraging MATLAB Simscape, modular DT frameworks were developed to simulate these systems under nominal, degraded, and fault conditions. The inclusion of fault injection models enables the generation of realistic datasets to support predictive maintenance, alleviating difficulties in data availability. Two case studies are presented to illustrate the potential of DT-based approaches to reduce downtime, optimizing performance, and enhancing system reliability. This paper provides a comparative analysis of existing DT tools, highlighting their capabilities and limitations in aerospace contexts. While platforms such as MATLAB Simulink and ANSYS Twin Builder offer robust modeling capabilities, operational tools like AVIATAR and IBM Maximo excel in fleet management and predictive analytics. This comparison highlights the need for tailored DT solutions that balance real-time capabilities, scalability, and configurability. This study contributes to the growing body of knowledge on DT technology, offering insights into its role in enhancing aviation safety, efficiency, and sustainability. It serves as a guide for applying DT-based health management, paving the way for broader adoption in next-generation aerospace systems.Item Open Access Off-design performance control and simulation for gas turbine engines with sequential combustors(SAGE, 2025-12-31) Li, Yi-Guang; Liu, YangA gas turbine engine with a sequential combustion system has the potential to offer high cycle efficiency at moderate turbine entry temperatures. Consequently, it has one more degree of power setting control, which offers more flexible but also more complex control of engine off-design operations. In this paper, a novel simulation method for off-design thermodynamic performance of sequential combustion gas turbines has been introduced and a novel performance control schedule for part-load operations at various ambient conditions have been proposed aiming to keep the relative workloads between the two turbine sections constant. The proposed control schedule is simple and can be adapted easily. By applying the off-design performance control schedule to a model industrial gas turbine engine with two sequential combustors, the performance of the model engine is simulated at different part-load and at different ambient conditions. The results show that by applying the proposed off-design performance control schedule, the model sequential combustion gas turbine engine could operate effectively at different part-load operating conditions and at different ambient conditions with both turbine sections keeping nearly constant workload distributions.