Environmental Sustainability
Browse
Browsing Environmental Sustainability by Publisher "Taylor & Francis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access An overview of non-destructive technologies for postharvest quality assessment in horticultural crops(Taylor & Francis, 2025) O’Brien, Ciara; Alamar, M. CarmenArtificial intelligence and machine vision are increasingly popular within food supply chains for automated decision making in quality grading and disease identification. There are many types of data that these models can be trained on, and choosing which information is needed is a critical factor in minimising both food loss and cost, while maximising the impact on food quality. Non-destructive technologies give information about crop phenotypes (e.g. external colour, oil content, sweetness) without damaging the crop, allowing a greater and more representative proportion the stored food to be analysed. These non-destructive technologies use different methods to analyse the product, each with different intrinsic capabilities and limitations. Therefore, choosing which technology is most appropriate for each application is a complex and costly decision. This mini-review summarises the physical and chemical basis of how some popular non-destructive technologies function, and how these different methods give unique advantages and limitations. The most popular technologies summarised include Red-Green-Blue (RGB) imaging, visible and near-infrared spectroscopy, and vibrometry. We also review technologies that are growing in popularity, including X-ray imaging, ultraviolet spectroscopy, and magnetic resonance imaging.Item Open Access Municipal wastewater treatment with anaerobic membrane Bioreactors for non-potable reuse: a review(Taylor & Francis, 2024-05-18) Huang, Yu; Jeffrey, Paul; Pidou, MarcAnaerobic membrane bioreactors (AnMBRs) are seen as a promising technology for application in water reuse schemes. However, the evidence base for their potential and efficacy in this regard is fragmented. We draw together this disparate knowledge base to offer a state of the art review of municipal wastewater treatment with AnMBRs and evaluate the technology’s potential application for water reuse. Water quality regulations and standards from different regions of the world are used as performance metrics to compare and contrast the treatment performance of pilot and laboratory scale AnMBR systems reported in the literature (n = 50). Findings indicate that under stable operation, AnMBRs have the potential to produce water for agricultural reuse. However, without post-treatment, AnMBRs are incapable of delivering water that meets other non-potable reuse standards across a range of important parameters such as COD, BOD5, NH3-N and TP. Analysis of key operational parameters determine the operation of AnMBR for non-potable reuse purpose cover influent water matrix, pH, temperature, hydraulic retention time, system and membrane configuration. An assessment of candidate post-treatment technologies suggests a tradeoff between the cost and effluent quality based on the reuse application requirement. We conclude by discussing a number of challenges and limitations to the use of AnMBRs for reuse applications in order to outline a pathway to maturity for effective treatment trains.