School of Water, Energy and Environment (SWEE)
Permanent URI for this community
Browse
Browsing School of Water, Energy and Environment (SWEE) by Publisher "American Society of Mechanical Engineers"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Analysis of the effect of a series of back twist blade configurations for an active pitch-to-stall floating offshore wind turbine(American Society of Mechanical Engineers, 2020-04-08) Ward, Dawn; Collu, Maurizio; Sumner, JoyFor a turbine mounted on a floating platform, extreme induced loads can be increased by up to 1.6 times those experienced by a turbine situated on a fixed base. If these loads cannot be reduced, towers must be strengthened which will result in increased costs and weight. These tower loads would be additionally exasperated for a pitch-to-feather controlled turbine by a phenomenon generally referred to as “negative damping,” if it were not avoided. Preventing negative damping from occurring on a pitch-to-feather controlled floating platform negatively affects rotor speed control and regulated power performance. However, minimizing the blade bending moment response can result in a reduction in the tower fore-aft moment response, which can increase the tower life. A variable-speed, variable pitch-to-stall (VSVP-S) floating semi-submersible wind turbine, which does not suffer from the negative damping and hence provides a more regulated power output, is presented. This incorporates a back twist blade profile such that the blade twist, starting at the root, initially twists toward stall and, at some pre-determined “initiation” point, changes direction to twist back toward feather until the tip. Wind frequency weighting was applied to the tower axial fatigue life trends of different blade profiles and a preferred blade back twist profile was identified. This had a back twist angle of −3 deg and started at 87.5% along the blade length and achieved a 5.1% increase in the tower fatigue life.Item Open Access Assessment of engine operability and overall performance for parallel hybrid electric propulsion systems for a single-aisle aircraft(American Society of Mechanical Engineers, 2021-09-16) Kang, Sangkeun; Roumeliotis, Ioannis; Zhang, Jinning; Pachidis, Vassilios; Broca, OlivierThis paper aims to assess the gas turbine operability and overall hybrid electric propulsion system performance for a parallel configuration applied to a 150 passenger single-aisle aircraft. Two arrangements are considered: one where the low pressure shaft is boosted and one where the high pressure shaft is boosted. For identifying limits in the hybridization strategy steady state and transient operation are considered and the hybridization effect on compressor operability is determined. Having established the electric power on-take limits with respect to gas turbine operation the systems performance at aircraft level is quantified for the relevant cases. Different power management strategies are applied for the two arrangements and for different power degrees of hybridization. The results indicate that despite the fact that pollutant emission and fuel consumption may improved for hybrid propulsion, this comes at the cost of reduced payload and operability margins. Boosting the low pressure shaft may give the highest engine performance benefits but with a significant weight penalty, while the low pressure compressor system operability is negatively affected. On the other hand boosting the high pressure shaft provides lower engine performance benefits but with smaller weight penalty and with less operability concerns.