Automotive, Energy and Photonics engineering
Browse
Browsing Automotive, Energy and Photonics engineering by Publisher "Elsevier"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access Catalysing decentralised renewable energy investment in Nigeria: investor-focused risk evaluation and de-risking strategies(Elsevier, 2025-06-01) Abba, Yahajja Zara Ibrahim; Balta-Ozkan, Nazmiye; Drew, Gillian H.Scaling up private investment in Decentralised Renewable Energy (DRE) is crucial for achieving universal electricity access in sub-Saharan Africa. Tailored de-risking actions based on investors' risk perceptions can facilitate investment. However, current literature provides a fragmented perspective of investor-specific DRE investment risks. Through a multi-step participatory approach involving an online survey, focus groups, and interviews, 40 multidimensional risk factors across six categories were evaluated using the analytical hierarchy process, to establish their significance among four investor groups: development finance institutions, domestic finance institutions, developers, impact investors. Overall, economic and financing risk categories emerged as most critical, while social and environmental risks were least prioritised. However, risk factor priorities varied among different investor groups, highlighting key mutual high-priority risk factors amounting to 37–58 % of risk weighting including currency volatility, low access to low-cost capital, revenue risk, and insecurity. Limited awareness of existing risk mitigation practices, cultural and behavioural barriers to energy use, and path dependence were identified as influential risk drivers. Evidence-based risk mitigation strategies such as priority sector lending mandates, portfolio aggregation, stronger policy implementation, social interventions, collaboration, and capacity development are recommended to facilitate DRE investment. This study serves as a reference for decision-makers to prioritise actions for catalysing DRE investment.Item Open Access Design and experimental tests for novel shapes of floating OWC wave energy converters with the additional purpose of breakwater(Elsevier, 2025-06-01) Lyu, Xiangcheng; Mi, Chenhao; Collions, Stan; Chen, Wenchuang; Yang, Danlei; Huang, LuofengThe oscillating water column (OWC) is a type of wave energy converter (WEC) that captures the energy of incoming waves. As waves reach the structure, their movement causes the water within an enclosed chamber to oscillate, creating airflow that powers a turbine, generating electricity. This principle can be applied to the design of breakwaters, which can protect marine structures such as floating solar farms and wind turbines. This study involved designing two types of buoyancy chambers for the OWC-WEC and two underneath baffles with adjustable spacing. These configurations were tested in a wave tank to assess wave energy capture, wave attenuation, hydrodynamics, and mooring forces. The experimental results demonstrate that a baffle spacing of 1 m, combined with a V-type buoyancy chamber, significantly enhances the wave energy capture and wave attenuation performance of the OWC. This configuration achieves up to a 57.09 % increase in the capture width ratio and a maximum reduction of 20.88 % in the wave transmission coefficient. Furthermore, mooring line forces are reduced by 21.86 %, while the baffles effectively mitigate pitch motion. Notably, greater pitch reduction improves the capture width ratio. In conclusion, this study introduces a novel wave energy converter, providing key insights for future marine energy development.Item Open Access Effect of the combined use of cryogenic + aging treatment on mechanical and damping property of Mn-Cu alloy based on response surface model(Elsevier, 2025-06-01) Ding, Ran; Liu, Guang-lei; Liu, Shu-cong; Ranjbar, Mostafa; Potter, Andrew; Liu, Hai-xiaIn this paper, the response surface method (RSM) is used to model the response surface between the target values and the cryogenic + aging treatment parameters. The effects of cryogenic + aging treatment on microstructures, mechanical, and damping properties of Mn-20Cu-5Ni-2Fe alloy are then investigated. The outcome indicates cryogenic + aging treatment can effectively enhance both mechanical and damping properties, and the optimum parameters cryogenic (-196 °C/30 h) + aging (428 °C/2 h) were obtained. The associated microstructural changes caused by the precipitated phase after the compound treatment resulted in an increase in the tensile strength from 358.3 MPa to 396.7 MPa, 38 MPa higher compared to that of the as-cast alloy. Meanwhile, it has the best damping property within a wide temperature range. At 50 °C, the internal friction value increased from 0.033 to 0.074, which was increased by 124 %. The damping strengthening mechanisms were discussed mainly from the perspective of the change in formation of {101} twins and motionable interface induced by fcc-fct transformation after the compound treatment. The obtained results provide a new reference for simultaneously improving mechanical and damping behaviors of Mn-Cu based alloys.Item Open Access High performance rechargeable aluminium ion batteries enabled by strategy of covalent organic frame material(Elsevier, 2025-05-01) Wei, Guokang; Qiao, Jia; Li, Xin; Dou, Aichun; Hu, Sijiang; Xie, Wei; Luo, Zhenhua; Yang, JianhongEmerging rechargeable aluminium-ion batteries (RAIBs) are a sustainable option for the next generation of low-cost, high-safety and large-scale energy storage technologies. While the unsatisfying availability of traditional inorganic materials has limited the development of RAIBs, the advance of organic materials is expected to be a breakthrough towards high-performance cathode. However, the existing extensive research often focuses on the selection of appropriate organic monomers or stay in the tentative stage of preliminary polymerization. It is difficult to break through the inherent characteristics of the instability of small organic ones and the easy aggregation and accumulation of macromolecular polymers, which is no doubt ignoring the huge potential of organic compounds for structural design at the molecular level. In this connection, our study demonstrates a material design strategy that introduces active functional groups to small molecular monomers and polymerizes them into REDOX active covalent organic framework (COF) with multiple N-containing groups. Theoretical simulations and ex-situ analysis revealed the key function of C-N and C=N as active sites for reversible storage of AlCl2 + ions. In addition, the macro-ring frame brings enhanced structural stability and environmental tolerance for COF in complex electrolyte, resulting in significantly improved electrochemical performance. At 1 A g−1, it exhibits a high specific capacity of 161.2 mAh g−1 and an excellent cycle life of approximately 100 % coulombic efficiency after more than 3,000 cycles. This work fully demonstrates the operability of the design strategy to synthesize COF from small molecular organics by introducing reactive functional groups and its great potential in the role of cathode materials in RAIBs. The success meanwhile provides an inspiration for the development of COF-based organic battery system in large-scale energy storage.Item Open Access Optimization of dual-module floating photovoltaic arrays: layout configuration and damping mechanisms for enhanced stability and energy performance(Elsevier, 2025-09-01) Zheng, Zhi; Hu, Jianjian; Huang, Qiang; Jin, Peng; Yang, Yifeng; Huang, Luofeng; Zhou, Zhaomin; Zhou, BinzhenFloating Photovoltaic (FPV) systems are a promising solution for offshore renewable energy, with modular FPV arrays offering significant potential for large-scale deployment. However, the development of FPV systems is hindered by insufficient understanding of their hydrodynamic performance, which affects stability and energy efficiency. This study proposes a dual-module FPV array combining box-type and semi-submersible modules to improve hydrodynamic stability under mild wave conditions in the South China Sea. The effects of array layout and PTO damping are examined under various wave conditions. The system is optimized to balance energy harvesting and motion control, and its performance is further evaluated under irregular waves at selected operational sites. Results indicate that the dual-module design effectively leverages the hydrodynamic characteristics of both module types, reducing motion responses and dynamic loads. The incorporation of optimal PTO damping further enhances system stability and energy efficiency by effectively suppressing pitch and heave motions, with maximum reductions of 31.43 % and 41.56 %, respectively, under the selected operational wave conditions. While damping remains effective under head-on waves, its performance slightly decreases under oblique waves, underscoring the importance of aligning the array with the predominant wave direction. Additionally, integrating a wave energy PTO system into the FPV array enables wave power to supplement solar energy, contributing 17.04 % of the total energy output at the selected operational sites. The proposed FPV system offers a practical solution for stabilizing floater motion, enhancing solar power generation, and capturing wave energy, advancing the feasibility of FPV technology for large-scale offshore applications.Item Open Access Revolutionizing power electronics design through large language models: applications and future directions(Elsevier, 2025-04) Ibrahim, Khalifa Aliyu; Luk, Patrick Chi-Kwong; Luo, Zhenhua; Ng, Seng Yim; Harrison, LeeThe design of electronic circuits is critical for a wide range of applications, from the electrification of transportation to the Internet of Things (IoT). It demands substantial resources, is time-intensive, and can be highly intricate. Current design methods often lead to inefficiencies, prolonged design cycles, and susceptibility to human error. Advancements in artificial intelligence (AI) play a crucial role in power electronics design by increasing efficiency, promoting automation, and enhancing sustainability of electrical systems. Research has demonstrated the applications of AI in power electronics to enhance system performance, optimization, and control strategy using machine learning, fuzzy logic, expert systems, and metaheuristic methods. However, a review that includes the recent AI advancements and potential of large language models (LLMs) like generative pre-train transformers (GPT) has not been reported. This paper presents an overview of applications of AI in power electronics (PE) including the potential of LLMs. The influence of LLMs-AI on the design process of PE and future research directions is also highlighted. The development of advanced AI algorithms such as pre-train transformers, real-time implementations, interdisciplinary collaboration, and data-driven approaches are also discussed. The proposed LLMs-AI is used to design parameters of high-frequency wireless power transfer (HFWPT) using MATLAB as a first case study, and high-frequency alternating current (HFAC) inverter using PSIM as a second case study. The proposed LLM-AI driven design is verified based on a similar design reported in the literature and Wilcoxon signed-rank test was conducted to further validate the result. Results show that the LLM-AI driven design based on the OpenAI foundation model has the potential to streamline the design process of power electronics. These findings provide a good reference on the feasibility of LLMs-AI on power electronic design.Item Open Access Seakeeping analysis of catamaran and barge floats for floating solar arrays: a CFD study with experimental validation(Elsevier, 2025-05-15) Ou, Binjian; Cerik, Burak Can; Huang, LuofengWhilst floating photovoltaic (FPV) is gaining attention for ocean-based applications, their motion response in waves significantly affects structural integrity and power generation efficiency. In particular, FPV is expected to operate in arrays consisting of extensive solar panels, and thus, floating solar systems are required to be analysed with neighbouring devices connected by joints. This study investigates the seakeeping characteristics of two FPV systems in arrays, comparing conventional barge floats with twin-hull (catamaran) floats under various wave conditions. A systematic investigation using Computational Fluid Dynamics (CFD) was conducted for the hydrodynamic response of both isoslated-single-floater and multi-body (1 × 3) configurations in regular waves, with non-dimentional wavelength ratio (λ/L) 1.62-4.27 to the floater length. Wave tank experiments were conducted to validate the CFD model, showing agreement with less than 10% discrepancies. The study focused on the multi-body behavior of heave and pitch Response Amplitude Operators (RAOs) and mooring line forces. Results show that the multi-catamaran configuration exhibited lower heave RAOs (by approximately 20°%) compared to multi-barge pontoons in long waves (λ/L > 2.47) while maintaining similar pitch responses. However, in shorter waves (λ/L < 2), the catamaran configuration showed up to 15% higher RAOs than barge's. The multi-body arrangement demonstrated significant array effects, with the leading float experiencing 30% higher mooring loads than the trailing float. The leading float also experiences the highest mooring forces. As the wavelength ratio increases, the barge float's front mooring force increases dramatically, reaching nearly twice that of the catamaran at a ratio of 4.27. These findings align with the RAO results, indicating that the barge float is more wave-sensitive under long-wavelength conditions, whereas the catamaran demonstrates superior station-keeping with lower mooring forces. This work provides quantitative guidance for selecting appropriate floater forms for FPV applications based on expected wave conditions.Item Open Access Unveiling host-guest interactions and stability of amine-functionalized silica sorbents for carbon capture(Elsevier, 2025-06-01) Ogunedo, Briggs M. O.; Wadi, Basil; Manovic, Vasilije; Nabavi, Seyed AliDespite making significant progress in terms of capture kinetics and capacity, the thermochemical and cyclic instability of silica-based amine functionalized adsorbents present challenges for their practical implementation and economic viability. Accordingly, this work provides a critical review to analyse factors affecting thermal and cyclic stability of functional silica-based sorbents. The first section provides background information and context for the review. The second section focuses on the synthesis routes employed for silica-based amine functionalized adsorbents. The third section delves into the mechanism underlying the thermal and cyclic instability observed in these adsorbents. The fourth section explored the factors that influence the thermal and cyclic stability of silica-based amine functionalized adsorbents. The last section dissects host-guest interaction in silica-based amine functionalized adsorbents. The review concludes by underscoring the importance of further research and development into host-guest interaction studies in amine functionalized adsorbents to optimize performance and address the challenges associated with thermal and cyclic instability, thereby enhancing the practical feasibility of these adsorbents in carbon capture applications.