CoA. PhD, EngD, MPhil & MSc by research theses
Permanent URI for this collection
Browse
Browsing CoA. PhD, EngD, MPhil & MSc by research theses by Course name "EngD"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Analysis and prediction of the low speed flow over a highly swept wing(2000-11) Shires, Andrew; Garry, Kevin P.; Fulker, J. L.A combined experimental and theoretical study is described of the low speed flow over a highly swept and cambered wing that simulates the flow features of a transonic manoeuvre condition. The thesis is divided into two parts: Part I examines the research objectives from a customer perspective, with background information on the project history and funding sources. Since the research is aimed at improving the aerodynamic performance of low observable configurations, stealth technologies are discussed and their implications for combat aircraft wing flows. The management chapter of the thesis then discusses the influences affecting the decision making process for the acquisition of weapon systems in the UK. Part II describes the design of a highly swept and cambered wing that generates strong adverse pressure gradients near the trailing edge, leading to three-dimensional separations in this region. Using surface flow visualisation the nature of these flows is defined, indicating how the position of a separated streamline moves forward with increasing angle of incidence. These observations are confirmed by flow predictions using the SAUNA Computational Fluid Dynamics (CFD) method that solves the Reynolds Averaged Navier-Stokes equations, employing a two-equation turbulence model. The mechanism of the flow separation is also predicted using CFD, indicating that a separated stream surface reattaches at the wing trailing edge, forming a ‘tunnel’ of separated flow. To the authors knowledge this represents the first time that the main physical features of such a complex three-dimensional separated flow has been modelled using a CFD method. From an evaluation of the CFD methods employed, a design process has been proposed by which a wing designer can determine if wing flows over similar configurations remain attached. Additionally, the velocity magnitudes within parts of the separated shear layers and the wake are obtained using an optical non-intrusive measurement technique and give good agreement with the theory. -Item Open Access An investigation into heat dissipation from a stationary commercial vehicle disc brake in parked conditions.(Cranfield University, 2013-11) Stevens, Kevin; Tirovic, Marko; Skipworth, HeatherDetailed understanding of heat dissipation from a stationary disc brake is of considerable importance for vehicle safety. This is essential for both park braking on inclines and for preventing brake fluid boiling in hydraulic brakes. Despite the experience proving the significance of such conditions, there is very little published data dealing with this phenomenon, and even ECE Regulation 13 does not specify hot parking braking performance. The problem of heat dissipation from stationary brake may appear simplistic but it is actually more complex than from a rotating disc, due to the lack of symmetry through or a dominant mode of heat transfer as natural convection is the only driving force behind the airflow. All three heat transfer modes exist in a transient process, with complex heat transfer paths within and between brake components. This Thesis investigates the cooling performance of a Commercial Vehicle (CV) brake whilst in stationary conditions. The research is predominantly orientated towards the thermal aspects of Electric Parking Brake (EPB) application in CVs. Contraction of large brake components after hot parking may lead to vehicle rollaway on inclines, with tragic consequences. An extensive theoretical and experimental study was conducted. An analytical model of a disc brake in free air was developed, enabling good prediction of disc temperatures and average surface convective heat transfer coefficients (hcₒnv) over the entire cooling range. A comprehensive CFD modelling of the 3-dimensional flowfield around the disc brake was also conducted, as well as predicting the surface convection coefficient distribution. Shear Stress Turbulence model was found to be most suitable for such studies. FE models were created to predict temperatures in all components of the brake assembly. A special Thermal Rig was developed for experimental validations, which uses an induction heater for heating the disc brake, and numerous surface mounted and embedded thermocouples for measuring component temperatures, as well as ‘free standing’ for determining air temperatures in specific points. IR cameras provided further temperature field information. The results clearly show little influence of the conductive heat dissipation mode. The study also showed, for the experimental arrangement used, a constant value of surface emissivity (ɛ = 0.92). With well-defined conductive and radiative heat dissipation modes, the emphasis was placed on investigating convective heat dissipation from a stationary disc brake. It has been demonstrated that the anti-coning straight vane design of brake disc does not cool effectively in stationary conditions. Expected ‘chimney effects’ in disc vent channels do not materialise due to large scale recirculation regions preventing airflow from entering the channels, which drastically reduces the convective cooling. Complex thermal interactions between the large assembly components are explained, with typical cooling time being just over an hour for disc brake cooling from 400°C to 100°C. Extracted heat transfer coefficients were used for establishing a complex FE assembly model, which enables accurate prediction of temperatures of individual components over the entire cooling period. The developed approach is used for predicting temperature of the existing brake assembly but is equally suited for generating new designs with more favourable characteristics. In addition to being a powerful design tool for assisting in EPB design and validation process, the methodology developed offers wide applications, such as thermal optimisation of the caliper housing for the installation of continuous wear monitoring sensors, smart slack adjusters (for low friction drag brakes), etc. EPBs in passenger cars have been successfully used for over 10 years now. They use a relatively simple approach for ensuring safe parking from hot by over-clamping (applying approximately twice the required actuating force) and re-clamping (repeated application after the vehicle has been parked). Large CV actuating forces prevent the use of over-clamping as this could damage the disc, whilst re-clamping would need to be repeated several times over a much longer period of time, requiring the vehicle battery to power the electronic systems for a longer period of time without recharging. Neither approach is acceptable, requiring a more in- depth thermal study of the CV brake in stationary conditions, as investigated in this Thesis. In addition to technical, there are marketing and financial aspects which make EPB introduction and acceptance in commercial vehicles very different to passenger car applications. Such an investigation was conducted, exploring the market the CV EPB will be sold in and whether it would accept the new technology. Two questionnaire analyses were carried out, with the second giving the respondent detailed information about the EPB. It was found that using an informed, knowledge based approach yielded more positive feedback to the proposed product. The outcome may be even considered more contrary than expected, rather than instigating mistrust, the new CV EPB technology created interest. Furthermore, reports of pneumatic malfunction indicated that independence from the pneumatic system should be used as the key selling point for the EPB, for all beneficiary segments.Item Open Access A physics-based maintenance cost methodology for commercial aircraft engines(Cranfield University, 2014-08) Stitt, Alice C.; Laskaridis, Panagiotis; Singh, RitiA need has been established in industry and academic publications to link an engine’s maintenance costs throughout its operational life to its design as well as its operations and operating conditions. The established correlations between engine operation, design and maintenance costs highlight the value of establishing a satisfactory measure of the relative damage due to different operating conditions (operational severity). The methodology developed in this research enables the exploration of the causal, physics-based relationships underlying the statistical correlations in the public domain and identifies areas for further investigation. This thesis describes a physics-based approach to exploring the interactions, for commercial aircraft, of engine design, operation and through life maintenance costs. Applying the “virtual-workshop” workscoping concept to model engine maintenance throughout the operating life captures the maintenance requirements at each shop visit and the impact of a given shop visit on the timing and requirements for subsequent visits. Comparisons can thus be made between the cost implications of alternative operating regimes, flight profiles and maintenance strategies, taking into account engine design, age, operation and severity. The workscoping model developed operates within a physics-based methodology developed collaboratively within the research group which encompasses engine performance, lifing and operational severity modelling. The tool-set of coupled models used in this research additionally includes the workscoping maintenance cost model developed and implements a simplified 3D turbine blade geometry, new lifing models and an additional lifing mechanism (Thermo-mechanical fatigue (TMF)). Case studies presented model the effects of different outside air temperatures, reduced thrust operations (derate), flight durations and maintenance decisions. The use of operational severity and exhaust gas temperature margin deterioration as physics based cost drivers, while commonly accepted, limit the comparability of the results to other engine-aircraft pairs as the definition of operational severity, its derivation and application vary widely. The use of a single operation severity per mission based on high pressure turbine blade life does not permit the maintenance to vary with the prevalent lifing mechanism type (cyclic / steady state).