CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "den Herder, Michael"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Agroforestry as a sustainable land use option to reduce wildfires risk in European Mediterranean areas
    (Springer, 2020-01-11) Damianidis, Christos; Santiago-Freijanes, Jose Javier; den Herder, Michael; Burgess, Paul; Mosquera-Losada, María Rosa; Graves, Anil; Papadopoulos, Andreas; Pisanelli, Andrea; Camilli, Francesca; Rois-Díaz, Mercedes; Kay, Sonja; Palma, João H. N.; Pantera, Anastasia
    Wildfires have always been an integral part of the ecology of many terrestrial ecosystems, but their frequency is increasing in many parts of the world. Wildfires were once a natural phenomenon, but after humans learned to control fire, it has been used as a management tool to increase soil fertility, to regenerate natural vegetation for grazing and to control competing vegetation. However, currently uncontrolled wildfires threaten not only natural vegetation, landscape biodiversity, communities and economies, but they also release large amounts of carbon dioxide, thus contributing to global temperature increase. Higher temperatures and drier summers have increased the risk of wildfires in biodiversity rich areas of European Mediterranean countries and have resulted in human casualties. The aim of this article is to investigate whether agroforestry, the practice of integrating woody vegetation and agricultural crops and/or livestock, could be a management tool to reduce wildfires in European Mediterranean countries. Fire events from 2008 to 2017 and data of land cover and land use were spatially correlated. Results indicated that agroforestry areas had fewer wildfire incidents than forests, shrublands or grasslands, providing evidence of the potential of agroforestry to reduce fire risk and protect ecosystems.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe
    (Elsevier, 2019-03-06) Sonja, Kay; Rega, Carlo; Moreno, Gerardo; den Herder, Michael; Palma, João H. N.; Borek, Robert; Crous-Duran, Josep; Freese, Dirk; Giannitsopoulos, Michail; Graves, Anil; Jäger, Mareike; Lamersdorf, Norbert; Memedemin, Daniyar; Mosquera-Losada, Rosa; Pantera, Anastasia; Paracchini, Maria Luisa; Paris, Pierluigi; Roces-Díaz, José V.; Rolo, Victor; Rosati, Adolfo; Sandor, Mignon; Smith, Jo; Szerencsits, Erich; Varga, Anna; Viaud, Valérie; Wawer, Rafal; Burgess, Paul J.; Herzog, Felix
    Agroforestry, relative to conventional agriculture, contributes significantly to carbon sequestration, increases a range of regulating ecosystem services, and enhances biodiversity. Using a transdisciplinary approach, we combined scientific and technical knowledge to evaluate nine environmental pressures in terms of ecosystem services in European farmland and assessed the carbon storage potential of suitable agroforestry systems, proposed by regional experts. First, regions with potential environmental pressures were identified with respect to soil health (soil erosion by water and wind, low soil organic carbon), water quality (water pollution by nitrates, salinization by irrigation), areas affected by climate change (rising temperature), and by underprovision in biodiversity (pollination and pest control pressures, loss of soil biodiversity). The maps were overlaid to identify areas where several pressures accumulate. In total, 94.4% of farmlands suffer from at least one environmental pressure, pastures being less affected than arable lands. Regional hotspots were located in north-western France, Denmark, Central Spain, north and south-western Italy, Greece, and eastern Romania. The 10% of the area with the highest number of accumulated pressures were defined as Priority Areas, where the implementation of agroforestry could be particularly effective. In a second step, European agroforestry experts were asked to propose agroforestry practices suitable for the Priority Areas they were familiar with, and identified 64 different systems covering a wide range of practices. These ranged from hedgerows on field boundaries to fast growing coppices or scattered single tree systems. Third, for each proposed system, the carbon storage potential was assessed based on data from the literature and the results were scaled-up to the Priority Areas. As expected, given the wide range of agroforestry practices identified, the carbon sequestration potentials ranged between 0.09 and 7.29 t C ha−1 a−1. Implementing agroforestry on the Priority Areas could lead to a sequestration of 2.1 to 63.9 million t C a−1 (7.78 and 234.85 
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Current extent and stratification of agroforestry in the European Union
    (Elsevier, 2017-03-20) den Herder, Michael; Moreno, Gerardo; Mosquera-Losada, María Rosa; Palma, João H. N.; Sidiropoulou, Anna; Santiago-Freijanes, Jose Javier; Crous-Duran, Josep; Paulo, Joana A.; Tomé, Margarida; Pantera, Anastasia; Papanastasis, Vasilios P.; Mantzanas, Kostas; Pachana, Przemko; Papadopoulos, Andreas; Plieninger, Tobias; Burgess, Paul J.
    An accurate and objective estimate on the extent of agroforestry in Europe is critical for the development of supporting policies. For this reason, a more harmonised and uniform Pan-European estimate is needed. The aim of this study was to quantify and map the distribution of agroforestry in the European Union. We classified agroforestry into three main types of agroforestry systems: arable agroforestry, livestock agroforestry and high value tree agroforestry. These three classes are partly overlapping as high value tree agroforestry can be part of either arable or livestock agroforestry. Agroforestry areas were mapped using LUCAS Land Use and Land Cover data (Eurostat, 2015). By identifying certain combinations of primary and secondary land cover and/or land management it was possible to identify agroforestry points and stratify them in the three different systems. According to our estimate using the LUCAS database the total area under agroforestry in the EU 27 is about 15.4 million ha which is equivalent to about 3.6% of the territorial area and 8.8% of the utilised agricultural area. Of our three studied systems, livestock agroforestry covers about 15.1 million ha which is by far the largest area. High value tree agroforestry and arable agroforestry cover 1.1 and 0.3 million ha respectively. Spain (5.6 million ha), France (1.6 million ha), Greece (1.6 million ha), Italy (1.4 million ha), Portugal (1.2 million ha), Romania (0.9 million ha) and Bulgaria (0.9 million ha) have the largest absolute area of agroforestry. However the extent of agroforestry, expressed as a proportion of the utilised agricultural area (UAA), is greatest in countries like Cyprus (40% of UAA), Portugal (32% of UAA) and Greece (31% of UAA). A cluster analysis revealed that a high abundance of agroforestry areas can be found in the south-west quadrat of the Iberian Peninsula, the south of France, Sardinia, south and central Italy, central and north-east Greece, south and central Bulgaria, and central Romania. Since the data were collected and analysed in a uniform manner it is now possible to make comparisons between countries and identify regions in Europe where agroforestry is already widely practiced and areas where there are opportunities for practicing agroforestry on a larger area and introducing novel practices. In addition, with this method it is possible to make more precise estimates on the extent of agroforestry in Europe and changes over time. Because agroforestry covers a considerable part of the agricultural land in the EU, it is crucial that it gets a more prominent and clearer place in EU statistical reporting in order to provide decision makers with more reliable information on the extent and nature of agroforestry. Reliable information, in turn, should help to guide policy development and implementation, and the evaluation of the impact of agricultural and other policies on agroforestry.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Driving forces for agroforestry uptake in Mediterranean Europe: application of the analytic network process
    (Springer, 2018-02-01) Lovrić, Marko; Rois-Díaz, Mercedes; den Herder, Michael; Pisanelli, Andrea; Lovrić, Nataša; Burgess, Paul J.
    The factors that determine the implementation of four alternative agroforestry practices or no agroforestry on a theoretical 200 ha farm in Mediterranean Europe were examined using an analytic network process (ANP) model. The four agroforestry practices considered were implementation of a form of (i) high natural and cultural value agroforestry, (ii) agroforestry with high value trees, and agroforestry for (iii) arable and (iv) livestock systems. The ANP model was developed in a participatory manner through a systematic series of quantitative questionnaires and workshops with agroforestry researchers. In general, all the Mediterranean agroforestry systems were associated with high benefits and opportunities, but also with high costs and high risks. The greatest benefits were attributed to high natural and cultural value agroforestry systems, which greatly contributed to the highest priority of this system. Overall ranking of priorities for the agroforestry management alternatives show robustness in the sensitivity analysis. The “no agroforestry” land use became the preferred option when costs were given a weighting of 0.50 or greater.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Exploring agroforestry limiting factors and digitalization perspectives: insights from a european multi-actor appraisal
    (Springer , 2024-10) Tranchina, Margherita; Burgess, Paul; Cella, Fabrizio Giuseppe; Cumplido-Marin, Laura; Gosme, Marie; den Herder, Michael; Kay, Sonja; Lawson, Gerry; Lojka, Bohdan; Palma, João; Pardon, Paul; Reissig, Linda; Reubens, Bert; Prins, Evert; Vandendriessche, Jari; Mantino, Alberto
    Despite its potential for fostering farm sustainability, the adoption of agroforestry faces context-dependent challenges, among which the (perceived) shortage of decision-supporting tools and barriers hindering the assessment of economic, environmental, and social benefits. The process of digitalization offers significant opportunities to enhance sustainability, but it remains crucial to foster a human-centric, fair, and sustainable approach. In the context of the DigitAF Horizon Europe project, we present the results of a multi-stakeholder questionnaire aimed at understanding the perceptions of stakeholders regarding agroforestry and digitalization, as well as the needs of these stakeholders for a successful implementation of this agricultural practice. In the questionnaire, there was a specific focus on the need for and the conditions for the use of digital tools and models, such as generalized digital tools, applications and mapping, climate and weather forecasting and recording, farm management and decision support, and agroforestry and environmental tools. The purpose of this survey was to provide insights to inform agroforestry actors and to foster collaborative initiatives that enhance the potential of digital tools to support the design, implementation, and maintenance of effective and sustainable agroforestry in the European context. Our questionnaire was completed by stakeholders from seven European countries, including farmers, academics, policy actors, farm advisors, and actors in the value chain with an interest in agroforestry. Stakeholders from six living labs, representing Czechia, Finland, Germany, Italy, the Netherlands, and the UK, were involved in the appraisal, along with a multi-stakeholder group from Belgium. Respondents used data and digital tools for various purposes in farming systems and were interested in their potential to improve agroforestry including animal, tree, and crop performance, management guidance, system design, and tree species selection. Our survey revealed that the perceived usefulness of digital tools for agroforestry was substantially higher than stakeholders' awareness of existing tools, indicating a need for better promotion and development of user-friendly, accessible solutions. Additionally, significant obstacles to agroforestry adoption, such as large up-front investments, administrative burdens, and fear of reduced CAP support, were identified, emphasizing the necessity for targeted support and policy improvements. Moving forward, efforts should focus on developing targeted solutions to promote agroforestry according to stakeholder perception, and user-friendly digital tools tailored to the needs and preferences expressed by stakeholders, while also increasing knowledge sharing and capacity building among practitioners and researchers.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback