Browsing by Author "Zou, Chan"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access The combined effect of H2O and SO2 on the simultaneous calcination/sulfation reaction in CFBs(Wiley, 2019-01-10) Chen, Liang; Wang, Chunbo; Zhao, Fan; Zou, Chan; Anthony, Edward J.The combined effect of H2O and SO2 on the reaction kinetics and pore structure of limestone during simultaneous calcination/sulfation reactions under circulating fluidized bed (CFB) conditions was first studied in a constant‐temperature reactor. H2O can accelerate the sulfation reaction rate in the slow‐sulfation stage significantly but has a smaller effect in the fast‐sulfation stage. H2O can also accelerate the calcination of CaCO3, and should be considered as a catalyst, since the activation energy for the calcination reaction was lower in the presence of H2O. When the limestone particles are calcining, SO2 in the flue gas can react with CaO on the outer particle layer and the resulting CaSO4 blocks the CaO pores, increases the diffusion resistance of CO2 and, in consequence, decreases the calcination rate of CaCO3. Here, gases containing 15% H2O and 0.3% SO2 are shown to increase the calcination rate. This means that the accelerating effect of 15% H2O on CaCO3 decomposition is stronger than the impeding effect caused by 0.3% SO2. The calcination rate of limestone particles was controlled by both the intrinsic reaction and the CO2 diffusion rate in the pores, but the intrinsic reaction rate played a major role as indicated by the effectiveness factors determined in this work. This may explain the synergic effect of H2O and SO2 on CaCO3 decomposition observed here. Finally, the effect of H2O and SO2 on sulfur capture in a 600 MWe CFB boiler burning petroleum coke is also analyzed. The sulfation performance of limestone evaluated by simultaneous calcination/sulfation is shown to be much higher than that by sulfation of CaO. Based on our calculations, a novel use of the wet flue gas recycle method was put forward to improve the sulfur capture performance for high‐sulfur, low‐moisture fuels such as petroleum coke.Item Open Access The effect of CO on the transformation of arsenic species: A quantum chemistry study(Elsevier, 2020-08-27) Anthony, Edward J.; Zou, ChanTo explore the effect of CO on the transformation of arsenic species, the reaction mechanism of homogeneous and heterogeneous reactions for arsenic oxides (AsO2 and As2O3) with CO were investigated via density functional theory (DFT). The geometries of reactants, intermediates, transition states and products for each reaction were optimized by using the B3LYP method in conjunction with the 6-31G(d) basis set, and the single-point energy of each structure was calculated at the B2PLYP/Def2-TZVP level. Also, thermodynamic and kinetic analyses were conducted to determine the reaction process. The results showed that the homogeneous reaction of AsO2 and CO has two channels and a transition state is found in each case. The homogeneous reaction process of As2O3 and CO undergoes two transition states and, finally, As2O3 is reduced to sub-oxides by CO. Char has a strong adsorption affinity for AsO2 and As2O3 in the presence of CO, and the adsorption mode of the AsO2 molecule on the char surface has a great influence on its reduction. The activation energy of the homogeneous reduction of As2O3 (75.9 kJ·mol-1) is lower than the heterogeneous reduction (94.2 kJ·mol-1), which suggests that As2O3 is more likely to react with CO in the flue gas. The calculation results revealed the mechanism for the influence of CO on arsenic behavior by density functional theory. These results are helpful for a molecular-level understanding of the transformation of arsenic species, which in turn provides a theoretical foundation for the emission and control of arsenic.Item Open Access The effect of H2O on formation mechanism of arsenic oxide during arsenopyrite oxidation: Experimental and theoretical analysis(Elsevier, 2019-12-07) Zou, Chan; Wang, Chunbo; Chen, Liang; Zhang, Yue; Xing, Jiaying; Anthony, Edward J.The effect of H2O on arsenic release behavior was investigated via experiment and first-principles density functional theory (DFT). The experimental results show that sulfide-bound arsenic is the main form present in coal, and that H2O has a positive influence on the release of arsenic during coal combustion. Furthermore, DFT calculations were performed to investigate the mechanism for H2O influence on arsenic oxidation. Thermodynamic and kinetic analyses were also conducted to study the influence of temperature on the reaction process. From thermodynamic analysis, arsenic oxide formation on the FeS2 (1 0 0) surface with and without H2O weakens with increasing temperature. In addition, the equilibrium constant for the reaction with H2O addition is slightly higher than that for the reaction without H2O, which suggests that the degree of the chemical reaction in the presence of H2O should increase. From kinetic analysis, the reaction rate constants increase with temperature, and the activation energy of the arsenic oxide formation reaction with and without H2O is 100.72 kJ/mol and 124.08 kJ/mol, respectively. This indicates that H2O adsorption on the surface can decrease the energy barrier and accelerate the reaction forming arsenic oxide. Based on the thermodynamic and kinetic analyses, it can be concluded that temperature has an inhibitory influence on reaction equilibrium and positive influence on the reaction rate. The experiment and calculation results explain the influence of H2O on the formation mechanism of arsenic oxide and provide a theoretical foundation for the emission and control of arsenic.Item Open Access Effect of H2O on the volatilization characteristics of arsenic during isothermal O2/CO2 combustion(Elsevier, 2019-03-06) Zou, Chan; Wang, Chunbo; Liu, Huimin; Chen, Liang; Anthony, Edward J.The effect of H2O on the volatilization behavior of arsenic in coal was studied under O2/CO2 combustion conditions at 800–1300 ºC, which covers the effective range of coal combustion temperatures appropriate for conventional coal combustion technologies. By controlling the combustion time of the coal, the volatilization percentage and rate of As emissions versus time were obtained. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were used to study the evolution of minerals with and without H2O under O2/CO2 combustion conditions. The effect of CO2 on As volatilization was first investigated and it was found that increasing CO2 concentrations inhibits the volatilization of As, with this effect decreasing with increasing temperature. When a fraction of the CO2 was replaced with H2O, the volatilization of As increased, but the positive effect of H2O also decreased with increasing temperature. The volatilization percentage of As with 30% H2O was 6.1% higher than that without H2O at 800 ºC, while it was only 2.7% higher at 1300 ºC. When the concentration of H2O increased from 0 to 30%, the peak value of the As volatilization rate increased and the time needed to reach the peak value decreased. The volatilization characteristics of As for three coals were very similar, which demonstrates that the effect of H2O was not limited to only one specific coal.Item Open Access Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies(Elsevier, 2018-04-17) Wang, Chunbo; Liu, Huimin; Zhang, Yue; Zou, Chan; Anthony, Edward J.Growing public awareness of the environmental impact of coal combustion has raised serious concerns about the various hazardous trace elements produced by coal firing. Arsenic deserves special attention due to its toxicity, volatility, bioaccumulation in the environment, and potential carcinogenic properties. As the main anthropogenic source of arsenic is coal combustion, its behavior in power plants is of concern. Unlike mercury, arsenic behavior in coal combustion has not been subjected to systematic, in-depth research. Different researchers have reached opposing conclusions about the behavior of arsenic in combustion systems and, as yet, there is relatively little research on arsenic removal technologies. In this paper, the volatilization, transformation, and emission behavior of arsenic and its removal technologies are discussed in depth. Factors affecting the volatilization characteristics of arsenic are summarized, including temperature, pressure, mode of occurrence of arsenic, coal rank, mineral matter, and the sulfur and chlorine content of the fuel. The behavior of arsenic during oxy-fuel combustion and the effect of combustion atmosphere (O2, CO2, SO2 and H2O(g)) are also reviewed in detail. In order to better understand the pathways of arsenic in a power plant environment, a particular focus in this work is the transformation mechanism of ultra-fine ash particles and the partitioning behavior of arsenic. Finally, the effects of air pollution control devices (APCDs) on arsenic emissions are examined, along with the effectiveness of flue gas arsenic removal technologies with different kinds of adsorbents, including calcium-based adsorbents, metal oxides, activated carbon, and fly ash.Item Open Access Vaporization model for arsenic during single-particle coal combustion: Model development(Elsevier, 2019-03-15) Liu, Huimin; Wang, Chunbo; Zhang, Yue; Zou, Chan; Anthony, Edward J.The kinetic parameters for chemical reactions associated with the vaporization of arsenic species are rarely reported due to the difficulties in obtaining suitably purified arsenic compounds as well as the issues associated with the extreme toxicity of many arsenic species. Here, we used a single-particle coal combustion model combined with a vaporization yield model of arsenic fitted by experimental data, which was used to determine the activation energy and frequency factor of the oxidation/decomposition reactions of arsenic species in this work, namely: As-org, FeAsS, FeAsO4 and Ca3(AsO4)2. The combustion kinetics of volatile/char and arsenic thermodynamic properties were used to model the vaporization zone and intensity of emissions for arsenic compounds. The results show that the reaction kinetic parameters of these arsenic species could be determined within an order of magnitude despite the variation of compositions in the coal sample and temperature, and this approach provides a new method to determine the reaction kinetics of hazardous elements such as As. Combining the vaporization yield and reaction kinetics of arsenic species with the single-particle coal combustion model, a novel vaporization model of arsenic was developed. With this model, the temporal evolution of combustion parameters (temperature, conversion ratio of coal, particle porosity, flue gas concentration) as well as arsenic vaporization ratio and As2O3(g) concentration can be predicted at the microscopic level.