CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zio, Enrico"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Bayesian network modelling for the wind energy industry: an overview
    (Elsevier, 2020-05-29) Adedipe, Tosin; Shafiee, Mahmood; Zio, Enrico
    Wind energy farms are moving into deeper and more remote waters to benefit from availability of more space for the installation of wind turbines as well as higher wind speed for the production of electricity. Wind farm asset managers must ensure availability of adequate power supply as well as reliability of wind turbines throughout their lifetime. The environmental conditions in deep waters often change very rapidly, and therefore the performance metrics used in different life cycle phases of a wind energy project will need to be updated on a frequent basis so as to ensure that the wind energy systems operate at the highest reliability. For this reason, there is a crucial need for the wind energy industry to adopt advanced computational tools/techniques that are capable of modelling the risk scenarios in near real-time as well as providing a prompt response to any emergency situation. Bayesian network (BN) is a popular probabilistic method that can be used for system reliability modelling and decision-making under uncertainty. This paper provides a systematic review and evaluation of existing research on the use of BN models in the wind energy sector. To conduct this literature review, all relevant databases from inception to date were searched, and a total of 70 sources (including journal publications, conference proceedings, PhD dissertations, industry reports, best practice documents and software user guides) which met the inclusion criteria were identified. Our review findings reveal that the applications of BNs in the wind energy industry are quite diverse, ranging from wind power and weather forecasting to risk management, fault diagnosis and prognosis, structural analysis, reliability assessment, and maintenance planning and updating. Furthermore, a number of case studies are presented to illustrate the applicability of BNs in practice. Although the paper details information applicable to the wind energy industry, the knowledge gained can be transferred to many other sectors.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback