CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhu, Fang"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Poly-adenine-mediated tetrahedral DNA nanostructure with multiple target-recognition sites for ultrasensitive and rapid electrochemical detection of Aflatoxin B1
    (Elsevier, 2023-12-01) Wang, Kaixuan; Zhu, Nuanfei; Li, Yumo; Zhang, Hu; Wu, Beibei; Cui, Jian; Tang, Jun; Yang, Zhugen; Zhu, Fang; Zhang, Zhen
    Tetrahedral DNA nanostructures (TDNs) are widely used in the development of electrochemical biosensors due to their structural stability, programmability, and strong interfacial orderliness. However, the complex modifications on the electrode and the single vertex target recognition of the TDNs limit their applications in electrochemical biosensing. Herein, we developed a universal detection system based on a novel polyadenine-based tetrahedral DNA nanostructure (ATDN) using Aflatoxin B1 (AFB1) as the model target for analysis. In the absence of target AFB1, the signal probes (SP) modified with ferrocene would be anchored by five aptamers on ATDN. The target capture by aptamers led to a release of SP from the electrode surface, resulting in a significant reduction of the electrochemical signal. This new nanostructure was not only dispensed with multi-step electrode modifications and strong mechanical rigidity but also had five modification sites which enhanced the detection sensitivity for the target. As a result, this biosensor shows good analytical performance in the linear range of 1 fg mL−1 to 1 ng mL−1, exhibiting a low detection limit of 0.33 fg mL−1. Satisfactory accuracy has also been demonstrated through good recoveries (95.2%–98.9%). The proposed new tetrahedral DNA nanostructure can provide a more rapid and sensitive alternative to previous electrochemical sensors based on the conventional TDN. Since DNA sequences can be designed flexibly, the sensing platform in this strategy can be extended to detect various targets in different fields.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback