Browsing by Author "Zheng, Yalin"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access Automated tortuosity analysis of nerve fibers in corneal confocal microscopy(IEEE, 2020-02-17) Zhao, Yitian; Zhang, Jiong; Pereira, Ella; Zheng, Yalin; Su, Pan; Xie, Jianyang; Zhao, Yifan; Shi, Yonggang; Qi, Hong; Liu, Jiang; Liu, YonghuaiPrecise characterization and analysis of corneal nerve fiber tortuosity are of great importance in facilitating examination and diagnosis of many eye-related diseases. In this paper we propose a fully automated method for image-level tortuosity estimation, comprising image enhancement, exponential curvature estimation, and tortuosity level classification. The image enhancement component is based on an extended Retinex model, which not only corrects imbalanced illumination and improves image contrast in an image, but also models noise explicitly to aid removal of imaging noise. Afterwards, we take advantage of exponential curvature estimation in the 3D space of positions and orientations to directly measure curvature based on the enhanced images, rather than relying on the explicit segmentation and skeletonization steps in a conventional pipeline usually with accumulated pre-processing errors. The proposed method has been applied over two corneal nerve microscopy datasets for the estimation of a tortuosity level for each image. The experimental results show that it performs better than several selected state-of-the-art methods. Furthermore, we have performed manual gradings at tortuosity level of four hundred and three corneal nerve microscopic images, and this dataset has been released for public access to facilitate other researchers in the community in carrying out further research on the same and related topics.Item Open Access Automatic 2-D/3-D vessel enhancement in multiple modality images using a weighted symmetry filter(IEEE, 2017-09-26) Zhao, Yitian; Zhao, Yitian; Zheng, Yalin; Liu, Yonghuai; Zhao, Yifan; Luo, Lingling; Yang, Siyuan; Na, Tong; Wang, Yongtian; Liu, JiangAutomated detection of vascular structures is of great importance in understanding the mechanism, diagnosis and treatment of many vascular pathologies. However, automatic vascular detection continues to be an open issue because of difficulties posed by multiple factors such as poor contrast, inhomogeneous backgrounds, anatomical variations, and the presence of noise during image acquisition. In this paper, we propose a novel 2D/3D symmetry filter to tackle these challenging issues for enhancing vessels from different imaging modalities. The proposed filter not only considers local phase features by using a quadrature filter to distinguish between lines and edges, but also uses the weighted geometric mean of the blurred and shifted responses of the quadrature filter, which allows more tolerance of vessels with irregular appearance. As a result, this filter shows a strong response to the vascular features under typical imaging conditions. Results based on 8 publicly available datasets (six 2D datasets, one 3D dataset and one 3D synthetic dataset) demonstrate its superior performance to other state-ofthe- art methods.Item Open Access A compactness based saliency approach for leakages detection in fluorescein angiogram(Springer Verlag, 2016-07-26) Zhao, Yitian; Su, Pan; Yang, Jian; Zhao, Yifan; Zheng, Yalin; Wang, YongtianThis study has developed a novel saliency detection method based on compactness feature for detecting three common types of leakage in retinal fluorescein angiogram: large focal, punctate focal, and vessel segment leakage. Leakage from retinal vessels occurs in a wide range of retinal diseases, such as diabetic maculopathy and paediatric malarial retinopathy. The proposed framework consists of three major steps: saliency detection, saliency refinement and leakage detection. First, the Retinex theory is adapted to address the illumination inhomogeneity problem. Then two saliency cues, intensity and compactness, are proposed for the estimation of the saliency map of each individual superpixel at each level. The saliency maps at different levels over the same cues are fused using an averaging operator. Finally, the leaking sites can be detected by masking the vessel and optic disc regions. The effectiveness of this framework has been evaluated by applying it to different types of leakage images with cerebral malaria. The sensitivity in detecting large focal, punctate focal and vessel segment leakage is 98.1, 88.2 and 82.7 %, respectively, when compared to a reference standard of manual annotations by expert human observers. The developed framework will become a new powerful tool for studying retinal conditions involving retinal leakage.Item Open Access Intensity and compactness enabled saliency estimation for leakage detection in diabetic and malarial retinopathy(Institute of Electrical and Electronics Engineers, 2016-07-21) Zhao, Yitian; Zheng, Yalin; Liu, Yonghuai; Yang, Jian; Zhao, Yifan; Chen, Duanduan; Wang, YongtianLeakage in retinal angiography currently is a key feature for confirming the activities of lesions in the management of a wide range of retinal diseases, such as diabetic maculopathy and paediatric malarial retinopathy. This paper proposes a new saliency-based method for the detection of leakage in fluorescein angiography. A superpixel approach is firstly employed to divide the image into meaningful patches (or superpixels) at different levels. Two saliency cues, intensity and compactness, are then proposed for the estimation of the saliency map of each individual superpixel at each level. The saliency maps at different levels over the same cues are fused using an averaging operator. The two saliency maps over different cues are fused using a pixel-wise multiplication operator. Leaking regions are finally detected by thresholding the saliency map followed by a graph-cut segmentation. The proposed method has been validated using the only two publicly available datasets: one for malarial retinopathy and the other for diabetic retinopathy. The experimental results show that it outperforms one of the latest competitors and performs as well as a human expert for leakage detection and outperforms several state-of-the-art methods for saliency detection.Item Open Access Retinal vascular network topology reconstruction and artery/vein classification via dominant set clustering(IEEE, 2019-07-03) Zhao, Yitian; Xie, Jianyang; Zhang, Huaizhong; Zheng, Yalin; Zhao, Yifan; Qi, Hong; Zhao, Yangchun; Su, Pan; Liu, Jiang; Liu, YonghuaiThe estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, INSPIRE, IOSTAR, VICAVR, DRIVE and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community.Item Open Access Saliency driven vasculature segmentation with infinite perimeter active contour model(Elsevier, 2017-02-22) Zhao, Yitian; Zhao, Jingliang; Yang, Jian; Liu, Yonghuai; Zhao, Yifan; Zheng, Yalin; Xia, Likun; Wang, YongtianAutomated detection of retinal blood vessels plays an important role in advancing the understanding of the mechanism, diagnosis and treatment of cardiovascular disease and many systemic diseases, such as diabetic retinopathy and age-related macular degeneration. Here, we propose a new framework for precisely segmenting retinal vasculatures. The proposed framework consists of three steps. A non-local total variation model is adapted to the Retinex theory, which aims to address challenges presented by intensity inhomogeneities, and the relatively low contrast of thin vessels compared to the background. The image is then divided into superpixels, and a compactness-based saliency detection method is proposed to locate the object of interest. For better general segmentation performance, we then make use of a new infinite active contour model to segment the vessels in each superpixel. The proposed framework has wide applications, and the results show that our model outperforms its competitors.Item Open Access Topology reconstruction of tree-like structure in images via structural similarity measure and dominant set clustering(IEEE, 2020-01-09) Xie, Jianyang; Zhao, Yitian; Liu, Yonghuai; Su, Pan; Zhao, Yifan; Cheng, Jun; Zheng, Yalin; Liu, JiangThe reconstruction and analysis of tree-like topological structures in the biomedical images is crucial for biologists and surgeons to understand biomedical conditions and plan surgical procedures. The underlying tree-structure topology reveals how different curvilinear components are anatomically connected to each other. Existing automated topology reconstruction methods have great difficulty in identifying the connectivity when two or more curvilinear components cross or bifurcate, due to their projection ambiguity, imaging noise and low contrast. In this paper, we propose a novel curvilinear structural similarity measure to guide a dominant-set clustering approach to address this indispensable issue. The novel similarity measure takes into account both intensity and geometric properties in representing the curvilinear structure locally and globally, and group curvilinear objects at crossover points into different connected branches by dominant-set clustering. The proposed method is applicable to different imaging modalities, and quantitative and qualitative results on retinal vessel, plant root, and neuronal network datasets show that our methodology is capable of advancing the current state-of-the-art techniques.