CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhao, Youwei"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Molten shell-activated, high-performance, un-doped Li4SiO4 for high-temperature CO2 capture at low CO2 concentrations
    (Elsevier, 2020-10-16) Wang, Ke; Gu, Feng; Clough, Peter T.; Zhao, Youwei; Zhao, Pengfei; Anthony, Edward J.
    Lithium orthosilicate (Li4SiO4) represents a potential class of high-temperature sorbents for CO2 capture in power plants and sorption enhanced methane reforming to produce H2. However, conventional wisdom suggests that pure Li4SiO4 should have extremely slow sorption kinetics at realistic low CO2 concentrations. Here, we report the opposite result: using a simple and cost-effective glucose-based mild combustion procedure, an unusually efficient and pure form of Li4SiO4 (MC-0.6) was synthesized to achieve a maximum uptake capacity of 35.0 wt% at 580 °C for CO2 concentrations under 15 vol% and maintained this capacity over multiple cycles. The characterization results showed that highly porous nano-agglomerate-like (50–100 nm) morphologies were apparent and ensured a rapid surface-sorption of CO2. In this process, a macroporous nano-sized Li2SiO3 cover on the melt layer of Li2CO3 was identified for the first time. This special structure appeared to accelerate the transportation of CO2 and the diffusion of Li+ and O2− through a molten layer enhancing contact with CO2. Thus, the sample MC-0.6 reduced both the surface-sorption and diffusion kinetics dependence on low CO2 concentrations. Rather than use traditional approaches (controlled morphologies combined with doping), we have demonstrated that the slow kinetics can be overcome simply by a controlled morphologies strategy, which opens up a new direction for the synthesis of high-performance Li4SiO4 sorbents.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Sorption of CO2 on NaBr co-doped Li4SiO4 ceramics: Structural and kinetic analysis
    (Elsevier, 2019-07-13) Wang, Ke; Zhao, Youwei; Clough, Peter T.; Zhao, Pengfei; Anthony, Edward J.
    Structurally modified and improved NaBr-co-doped Li4SiO4 ceramics were developed for CO2 absorption in low-CO2-concentration atmospheres. Pure and NaCl-doped Li4SiO4 ceramics were also prepared for comparison. The samples were analyzed by X-ray diffraction, Scanning Electron Microscopy, N2 adsorption, X-ray photoelectron spectroscopy, differential scanning calorimetry, and thermogravimetric analyses (dynamic and isothermal). The sorption kinetics were obtained using a double exponential model. The results showed that both Na and Br can be introduced into the Li4SiO4 structure and doped on Li and oxygen sites, respectively. The doped sample presented a Li2O-enriched surface, guaranteeing abundant LiO sites and are significantly different from previous anionic (CO3, F and Cl) doping of Li4SiO4, Br doping also generated macroporous features with small particle size, these favorable characteristics promoted the surface chemisorption kinetics. Moreover, DSC analysis confirmed the formation of the molten phases during CO2 absorption, which helps improve the lithium diffusion kinetics. Here, 0.1 mol NaBr doping was used to reach a maximum absorption capacity (>30.0 wt%) in 15 vol% CO2, suggesting that NaBr-doped Li4SiO4 ceramics have great potential for CO2 capture at high temperature.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Structural and kinetic analysis of CO2 sorption on NaNO2-promoted MgO at moderate temperatures
    (Elsevier, 2019-04-12) Wang, Ke; Zhao, Youwei; Clough, Peter T.; Zhao, Pengfei; Anthony, Edward J.
    (200-500 °C) CO2 capture. However, the structure-performance relationship and kinetic characteristics of NaNO2-promoted MgO remain unclear. Here the effects of physical-chemical properties on the CO2 sorption performance of NaNO2-promoted MgO and the sorption kinetics were comprehensively studied to elucidate the detailed role of NaNO2. Samples were characterized by X-ray diffraction, scanning electron microscopy, N2 adsorption, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The sorption kinetics were obtained by isothermal thermogravimetry and elucidated using a double exponential model. Compared with pure MgO and NaNO3-promoted MgO, NaNO2-modified MgO had a lower initial sorption temperature and a unique bimodal sorption characteristic. Characterizations results revealed that such bimodal sorption was due to the presence of double promoters (mixture of NaNO2 and NaNO3) which implies that some of the nitrite was oxidized to nitrate during the preparation process. Deposition of double promoters further reduced the amounts of hydroxide and carbonate species for pure MgO while still preserving more hydroxide and carbonate species on the surface as compared with NaNO3-promoted MgO. The kinetics analysis demonstrated that the double exponential model can well-describe the sorption process for both NaNO3- and NaNO2-promoted MgO, suggesting that the entire sorption occurs as a double process (surface chemisorption and product layer diffusion). Significantly differences were seen from NaNO3-promoted MgO, and the surface chemisorption process of NaNO2-promoted MgO was independent of temperature, which suggests that an increased presence of hydroxide and carbonate species provide more active sites for greatly facilitating surface chemisorption.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback