CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhao, Jinyan"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Large-area and clean graphene transfer on gold-nanopyramid-structured substrates: implications for surface-enhanced Raman scattering detection
    (American Chemical Society, 2022-03-16) Wu, Heping; Niu, Gang; Ren, Wei; Yang, Zhugen; Xu, Qihang; Dai, Liyan; Jiang, Luyue; Zhai, Shijie; Zhao, Jinyan; Zhang, Nan; Zhao, Libo; Jiang, Zhuangde; Zhao, Gang
    The transfer of large-area and clean graphene to arbitrary substrates, especially to those with raised nanostructures, represents a great challenge. Polymer-based supporting layers generally lead to organic residues, while graphene transfer using alternative supporting materials like paraffin suffers from breaking and thus limits the transfer area. We demonstrated an improved poly(methyl methacrylate) (PMMA)/paraffin double layer, enabling the large-area transfer of graphene with high cleanliness and high coverage (81%) onto gold nanopyramid (AuNP)-structured substrates. The impact of supporting layers including single PMMA or paraffin and mixed PMMA/paraffin was clarified. The properties of graphene on AuNPs were theoretically and experimentally examined in detail. Raman spectra show a polarization-dependent D peak due to the folding of large-curvature graphene. The graphene on AuNPs shows a slightly tensile strain and provides extra surface-enhanced Raman scattering (SERS) with an enhancement factor of ∼20 times. These findings open a pathway to extend the applications of transferred graphene on raised nanostructures in many fields, such as SERS detection, catalysis, biosensors, light-emitting diodes, solar cells, and advanced transparent conductors.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback