CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhang, Runda"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Efficient and near-optimal global path planning for AGVs: a DNN-based double closed-loop approach with guarantee mechanism
    (Institute of Electrical and Electronics Engineers (IEEE), 2024) Zhang, Runda; Chai, Runqi; Chen, Kaiyuan; Zhang, Jinning; Chai, Senchun; Xia, Yuanqing; Tsourdos, Antonios
    In this article, a novel global path planning approach with rapid convergence properties for autonomous ground vehicles (AGVs) named neural sampling rapidly exploring random tree (NS-RRT*) is proposed. This approach has a three-layer structure to obtain a feasible and near-optimal path. The first layer is the data collection stage. Utilizing the target area adaptive rapidly exploring random tree (TAA-RRT*) algorithm to establish a collection of paths considering the initial noise disturbance. To enhance network generalization, an optimal path backward generation (OPBG) strategy is introduced to augment the dataset size. In the second layer, the deep neural network (DNN) is trained to learn the relationships between the states and the sampling strategies. In the third layer, the trained model is used to guide RRT* sampling, and an efficient guarantee mechanism is also designed to ensure the feasibility of the planning task. The proposed algorithm can assist the RRT* algorithm in efficiently obtaining optimal or near-optimal strategies, significantly enhancing search efficiency. Numerical results and experiments are executed to demonstrate the feasibility and efficiency of the proposed method.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback