CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhang, Kuankuan"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Development and application of DNA hydrogels in biosensing: current status and future implications
    (Elsevier, 2025-06-01) Chen, Zhuo; Mao, Kang; Xue, Jiaqi; Feng, Rida; Zhang, Kuankuan; Su, Junxia; Du, Wei; Ran, Jiabing; Yang, Changying; Yang, Zhugen; Zhang, Hua
    As emerging biopolymer materials, DNA hydrogels quickly respond to external stimuli to specifically recognize DNA through base pairing and have become widely used in the field of biosensors. Unlike traditional biosensing strategies, biosensors based on DNA hydrogels are highly specific, programmable and degradable. In this work, based on the advantages and wide application of DNA hydrogels in the field of biosensors, the progress of DNA hydrogel biosensors is systematically summarized in terms of the types of DNA hydrogels, detection principles and biosensor device integration. First, the types of DNA hydrogels used in biosensors are briefly introduced. Next, we thoroughly demonstrate the detection principles of DNA hydrogel biosensors; the detection principles depend on the recognition elements, signal elements, and transduction types of the DNA hydrogel used in the biosensor. In particular, we demonstrate the great potential of integrated devices and techniques used in DNA hydrogel biosensors, such as microfluidics and portable devices. Finally, the challenges and future development of DNA hydrogels in biosensing are discussed. This work can be used as a reference for research on biosensing analysis using DNA hydrogels.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Nanomaterial-based aptamer sensors for analysis of illicit drugs and evaluation of drugs consumption for wastewater-based epidemiology
    (Elsevier, 2020-06-06) Mao, Kang; Zhang, Hua; Pan, Yuwei; Zhang, Kuankuan; Cao, Haorui; Li, Xiqing; Yang, Zhugen
    The abuse of illicit drugs usually associated with dramatic crimes may cause significant problems for the whole society. Wastewater-based epidemiology (WBE) has been demonstrated to be a novel and cost-effective way to evaluate the abuse of illicit drugs at the community level, and has been used as a routine method for monitoring and played a significant role for combating the crimes in some countries, e.g. China. The method can also provide temporal and spatial variation of drugs of abuse. The detection methods mainly remain on the conventional liquid chromatography coupled with mass spectrometry, which is extremely sensitive and selective, however needs advanced facility and well-trained personals, thus limit it in the lab. As an alternative, sensors have emerged to be a powerful analytical tool for a wide spectrum of analytes, in particular aptamer sensors (aptasensors) have attracted increasing attention and could act as an efficient tool in this field due to the excellent characteristics of selectivity, sensitivity, low cost, miniaturization, easy-to-use, and automation. In this review, we will briefly introduce the context, specific assessment process and applications of WBE and the recent progress of illicit drug aptasensors, in particular focusing on optical and electrochemical sensors. We then highlight several recent aptasensors for illicit drugs in new technology integration and discuss the feasibility of these aptasensor for WBE. We will summarize the challenges and propose our insights and opportunity on aptasensor for WBE to evaluate community-wide drug use trends and public health
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Nanomaterial-based aptamer sensors for arsenic detection
    (Elsevier, 2019-10-15) Mao, Kang; Zhang, Hua; Wang, Zhenglu; Cao, Haorui; Zhang, Kuankuan; Li, Xiqing; Yang, Zhugen
    Arsenic (As) is a highly toxic contaminant in the environment and a serious carcinogen for the human being. The toxicity of arsenic significantly threatens environmental and human health. The effective removing technology for arsenic remains challenging, and one of the reasons is due to the lack of powerful detection method in the complex environmental matrix. There is thus an urgent need to develop novel analytical methods for arsenic, preferably with the potential for the field-testing. To combat arsenic pollution and maintain a healthy environment and eco-system, many advanced analytical methods have been developed for arsenic detection in various samples. Among these strategies, biosensors hold great promise for rapid detection of arsenic, in particular, nanomaterials-based aptamer sensors have attracted significant attention due to their simplicity, high sensitivity and rapidness. In this paper, we reviewed the recent development and promising applications of aptamer sensors (aptasensors) based-on nanomaterial for arsenic detection, in particular with emphasis on the works using optical and electrochemical technologies. We also discussed the recent novel technology in aptasensors development for arsenic detection, including nucleic acid amplification for signal enhancement and device integration for the portability of arsenic sensors. We are hoping this review could inspire further researches in developing novel nanotechnologies based aptasensors for possible on-site detection of arsenic.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Rolling circle amplification as an efficient analytical tool for rapid detection of contaminants in aqueous environments
    (MDPI, 2021-09-23) Zhang, Kuankuan; Zhang, Hua; Cao, Haorui; Jiang, Yu; Mao, Kang; Yang, Zhugen
    Environmental contaminants are a global concern, and an effective strategy for remediation is to develop a rapid, on-site, and affordable monitoring method. However, this remains challenging, especially with regard to the detection of various contaminants in complex water environments. The application of molecular methods has recently attracted increasing attention; for example, rolling circle amplification (RCA) is an isothermal enzymatic process in which a short nucleic acid primer is amplified to form a long single-stranded nucleic acid using a circular template and special nucleic acid polymerases. Furthermore, this approach can be further engineered into a device for point-of-need monitoring of environmental pollutants. In this paper, we describe the fundamental principles of RCA and the advantages and disadvantages of RCA assays. Then, we discuss the recently developed RCA-based tools for environmental analysis to determine various targets, including heavy metals, organic small molecules, nucleic acids, peptides, proteins, and even microorganisms in aqueous environments. Finally, we summarize the challenges and outline strategies for the advancement of this technique for application in contaminant monitoring.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback