Browsing by Author "Xiao, Dan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Bactericidal efficiency and photochemical mechanisms of micro/nano bubble–enhanced visible light photocatalytic water disinfection(Elsevier, 2021-08-08) Fan, Wei; Cui, Jingyu; Li, Qi; Huo, Yang; Xiao, Dan; Yang, Xia; Yu, Hongbin; Wang, Chunliang; Jarvis, Peter; Lyu, Tao; Huo, MingxinMicrobial contamination of water in the form of highly-resistant bacterial spores can cause a long-term risk of waterborne disease. Advanced photocatalysis has become an effective approach to inactivate bacterial spores due to its potential for efficient solar energy conversion alongside reduced formation of disinfection by-products. However, the overall efficiency of the process still requires significant improvements. Here, we proposed and evaluated a novel visible light photocatalytic water disinfection technology by its close coupling with micro/nano bubbles (MNBs). The inactivation rate constant of Bacillus subtilis spores reached 1.28 h−1, which was 5.6 times higher than that observed for treatment without MNBs. The superior performance for the progressive destruction of spores’ cells during the treatment was confirmed by transmission electron microscopy (TEM) and excitation-emission matrix (EEM) spectra determination. Experiments using scavengers of reactive oxygen species (ROSs) revealed that H2O2 and •OH were the primary active species responsible for the inactivation of spores. The effective supply of oxygen from air MNBs helped accelerate the hole oxidation of H2O2 on the photocatalyst (i.e. Ag/TiO2). In addition, the interfacial photoelectric effect from the MNBs was also confirmed to contribute to the spore inactivation. Specifically, MNBs induced strong light scattering, consequently increasing the optical path length in the photocatalysis medium by 54.8% at 700nm and enhancing light adsorption of the photocatalyst. The non-uniformities in dielectricity led to a high-degree of heterogeneity of the electric field, which triggered the formation of a region of enhanced light intensity which ultimately promoted the photocatalytic reaction. Overall, this study provided new insights on the mechanisms of photocatalysis coupled with MNB technology for advanced water treatment.Item Open Access An integrated approach using ozone nanobubble and cyclodextrin inclusion complexation to enhance the removal of micropollutants(Elsevier, 2021-03-11) Fan, Wei; An, Wengang; Huo, Mingxin; Xiao, Dan; Lyu, Tao; Cui, JingyuOzone (O3) has been widely used for the elimination of recalcitrant micropollutants in aqueous environments, due to its strong oxidation ability. However, the utilization efficiency of O3 is constrained by its low solubility and short half-life during the treatment process. Herein, an integrated approach, using nanobubble technology and micro-environmental chemistry within cyclodextrin inclusion cavities, was studied in order to enhance the reactivity of ozonisation. Compared with traditional macrobubble aeration with O3 in water, nanobubble aeration achieved 1.7 times higher solubility of O3, and increased the mass transfer coefficient 4.7 times. Moreover, the addition of hydroxypropyl-β-cyclodextrin (HPβCD) further increased the stability of O3 through formation of an inclusion complex in its molecule-specific cavity. At a HPβCD:O3 molar ratio of 10:1, the lifespan of O3 reached 18 times longer than in a HPβCD-free O3 solution. Such approach accelerated the removal efficiency of the model micropollutant, 4-chlorophenol by 6.9 times, compared with conventional macrobubble ozonation. Examination of the HPβCD inclusion complex by UV-visible spectroscopy and Nuclear Magnetic Resonance analyses revealed that both O3 and 4-chlorophenol entered the HPβCD cavity, and Benesi-Hildebrand plots indicated a 1:1 stoichiometry of the host and guest compounds. Additionally, molecular docking simulations were conducted in order to confirm the formation of a ternary complex of HPβCD:4-chlorophenol:O3 and to determine the optimal inclusion mode. With these results, our study highlights the viability of the proposed integrated approach to enhance the ozonation of organic micropollutantsItem Open Access A modelling approach to explore the optimum bubble size for micro-nanobubble aeration(Elsevier, 2022-11-16) Fan, Wei; Li, Yuhang; Lyu, Tao; Yu, Jia'ao; Chen, Zhen; Jarvis, Peter; Huo, Yang; Xiao, Dan; Huo, MingxinBubble aeration has been widely applied in water/wastewater treatment, however its low gas utilization rate results in high energy consumption. Application of micro-nanobubbles (MNB) has emerged as a process with the potential to significantly increase gas utilisation due to their high relative surface area and high gas-liquid mass transfer efficiency. In this study, we demonstrate through calibrated models that MNB of an optimum bubble size can shrink and burst at or below the water surface enabling (1) all encapsulated gas to thoroughly dissolve in water, and (2) the bursting of nanobubbles to potentially generate free radicals. Through the understanding of MNB dimensional characteristics and bubble behaviour in water, a dynamic model that integrated force balance (i.e. buoyancy force, gravity, drag force, Basset force and virtual mass force), and mass transfer was developed to describe the rising velocity and radius variation of MNB along its upward trajectory. Unlike for conventional millimetre-sized bubbles, intensive gas dissolution of MNBs led to radius reduction for small bubbles, while a large initial radius triggers bubble swelling. The initial water depth was also crucial, where greater depth could drive the potential for bubble shrinkage so that they were more liable to contract. For example, the optimum bubble size of air (42–194 μm) and oxygen (127–470 μm) MNB that could achieve complete gas transfer (100% gas utilisation) for a range of specific water depths (0.5–10 m) were calculated. The modelling results for microbubbles (10–530 μm) were well validated by the experimental data (R2>0.85). However, the validation of the modelling results for nanobubble (<1 μm) aeration requires further study due to a lack of available empirical data. In this study, the proposed model and analysis provided new insights into understanding bubble dynamics in water and offered fundamental guidance for practitioners looking to upgrade bubble aeration system.