CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Whitton, Rachel Louise"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Algae reactors for wastewater treatment
    (Cranfield University, 2016-02) Whitton, Rachel Louise; Jefferson, Bruce; Villa, Raffaella
    The onset of the Water Framework Directive (WFD) will challenge water utilities to further reduce their wastewater phosphorus discharges to < 0.5 mg.L- 1 . Whilst conventional treatments, such as chemical dosing, are able to meet these new discharge consents, the strategies are representative of a linear economy model where resources are unrecovered and disposed. An alternative solution which can contribute to the aspiration of a circular economy is microalgae. Microalgae are ubiquitous in wastewater environments and assimilate phosphorus during their growth, to residual concentrations complementary of the WFD. Furthermore, microalgal biomass can be anaerobically digested to produce biomethane offering the potential for an energy neutral approach. However, uptake of microalgal systems are lacking in the UK through limited knowledge of operation; and the belief that such solutions are synonymous to large, shallow open ponds with extensive treatment times. The development of alternative microalgal reactors are increasingly investigated to overcome these implementation challenges. Of these, immobilised microalgae has shown great potential; and whilst within its infancy demonstrates the greatest opportunity for development and optimisation. This thesis determines the critical operational parameters that influence the remediation efficacy of immobilised microalgae for tertiary nutrient removal; including species selection, biomass concentration, treatment period and lighting; with recommendations for optimal performance. These recommendations are then applied to the design and operation of an immobilised bioreactor (IBR) to understand the key design and operating components that influence the overall economic viability. In doing so, the potential for an IBR to be economically viable, within the next decade, in comparison to traditional approaches are discussed.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback