CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "White, Brian A."

Now showing 1 - 9 of 9
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Airborne behaviour monitoring using Gaussian processes with map information
    (Institution of Engineering and Technology (IET), 2013-07-31T00:00:00Z) Oh, Hyondong; Shin, Hyosang; Kim, Seungkeun; Tsourdos, Antonios; White, Brian A.
    This paper proposes an airborne behaviour monitoring methodology of ground vehicles based on a statistical learning approach with domain knowledge given by road map information. To monitor and track the moving ground target using UAVs aboard a moving target indicator, an interactive multiple model (IMM) filter is firstly applied. {\color{red}The IMM filter consists of an on-road moving mode using a road-constrained filter and an off-road moving mode using a conventional filter.} Mode probability is also calculated from the IMM filter, and it provides deviation of the vehicle from the road. Then, a novel hybrid algorithm for anomalous behaviour recognition is developed using a Gaussian process regression on velocity profile along the one-dimensionalised position of the vehicle, as well as the deviation of the vehicle. To verify the feasibility and benefits of the proposed approach, a numerical simulation is performed using realistic car trajectory data in a city traffic.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Airborne mapping of complex obstacles using 2D Splinegon
    (2008-06-04T00:00:00Z) Lazarus, Samuel B.; Shanmugavel, Madhavan; Tsourdos, Antonios; Zbikowski, Rafal; White, Brian A.
    This paper describes a recently proposed algorithm in mapping the unknown obstacle in a stationary environment where the obstacles are represented as curved in nature. The focus is to achieve a guaranteed performance of sensor based navigation and mapping. The guaranteed performance is quantified by explicit bounds of the position estimate of an autonomous aerial vehicle using an extended Kalman filter and to track the obstacle so as to extract the map of the obstacle. This Dubins path planning algorithm is used to provide a flyable and safe path to the vehicle to fly from one location to another. This description takes into account the fact that the vehicle is made to fly around the obstacle and hence will map the shape of the obstacle using the 2D-Splinegon technique. This splinegon technique, the most efficient and a robust way to estimate the boundary of a curved nature obstacles, can provide mathematically provable performance guarantees that are achievable in practice.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Computational Optimal Control of the Terminal Bunt Manoeuvre
    (Cranfield University, 2007) Subchan; White, Brian A.; Zbikowski, Rafal
    This work focuses on a study of missile guidance in the form of trajectory shaping of a generic cruise missile attacking a fixed target which mu ·t be struck from above. The problem is reinterpreted using optimal control theory resulting in two formulations: I ) minimum time-integrated altitude and 2) minimum flight time. Each formulation entails nonlinear, two-dimensional missile flight dynamics, boundary conditions and path constraints. Since the thus obtained optimal control problems do not admit analytical solutions, a recourse to computational optimal control is made. The focus here is on informed use of the tools of computational optimal control, rather than their development. Each of the formulations is solved using a three-stage approach. In stage I, the problem is discretised, effectively transforming it into a nonlinear programming problem, and hence suitable for approximate solution with the FORTRAN packages DIRCOL and NUDOCCCS. The results of this direct approach are used to discern the structure of the optimal solution, i.e. type of constraints active, time of their activation, switching and jump points. This qualitative analysis, employing the results of stage I and op- timal control theory, constitutes stage 2. Finally, in stage 3, the insight of stage 2 are made precise by rigorous mathematical formulation of the relevant two-point boundary value problems (TPBVPs), using the approach private theorems of optimal control theory. The TPBVPs obtained from this indirect approach are then solved using the FORTRA package B DSCO and the results compared with the appropriate solutions of stage I. For each formulation (minimum altitude and minimum time) the influence of boundary conditions on the structure of the optimal solution and the performance index is investigated. The results are then interpreted from the operational and computational perspectives. Software implementation employing DIRCOL, NUDOCCCS and BNDsca, which produced the results, is described and documented. Finally, some conclusions are drawn and recommendations made.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Computational optimal control of the terminal bunt manoeuvre
    (2016-10-10) Subchan; Zbikowski, Rafal; White, Brian A.
    This work focuses on a study of missile guidance in the form of trajectory shaping of a generic cruise missile attacking a fixed target which must be struck from above. The problem is reinterpreted using optimal control theory resulting in two formulations: I) minimum time-integrated altitude and 2) minimum flight time. Each formulation entails nonlinear, two-dimensional missile flight dynamics, boundary conditions and path constraints. Since the thus obtained optimal control problems do not admit analytical solutions, a recourse to computational optimal control is made. The focus here is on informed use of the tools of computational optimal control, rather than their development. Each of the formulations is solved using a three-stage approach. In stage I, the problem is discretised, effectively transforming it into a nonlinear programming problem, and hence suitable for approximate solution with the FORTRAN packages DIRCOL and NUDOCCCS. The results of this direct approach are used to discern the structure of the optimal solution, i.e. type of constraints active, time of their activation, switching and jump points. This qualitative analysis, employing the results of stage I and optimal control theory, constitutes stage 2. Finally, in stage 3, the insight of stage 2 are made precise by rigorous mathemati cal formulation of the relevant two-point boundary value problems (TPBVPs), using the appropriate theorems of optimal control theory. The TPBVPs obtained from this indirect approach are then solved using the FORTRAN package BNDSCO and the results compared with the appropriate solutions of stage I. For each formulation (minimum altitude and minimum time) the influence of boundary conditions on the structure of the optimal solution and the performance index is investigated. The results are then interpreted from the operational and computational perspectives. Software implementation employing DIRCOL, NUDOCCCS and BNDSCO, which produced the results, is described and documented. Finally, some conclusions are drawn and recommendations made.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    On-line evolutionary algorithm guidance for multiple missiles against multiple targets
    (Elsevier, 2004-06-18) Hughes, Evan J.; White, Brian A.
    This paper details the application of a Cooperative Coevolution On-Line Evolutionary Algorithm (CCOLEA) to the guidance of a swarm of multiple missiles, against multiple targets. The CCOLEA trades the spatial distribution of missiles at impact, against the cost of re-aiming the missiles' seekers onto their final targets. A parallel approach is used where each missile optimises its own performance, based on limited information from the other missiles. The decision making processis thus distributed between the missiles giving distributed coordination.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Path planning of multiple autonomous vehicles
    (Cranfield University, 2007-06-18T09:37:00Z) Shanmugavel, M.; Tsourdos, Antonios; White, Brian A.
    Safe and simultaneous arrival of constant speed, constant altitude UAVs on target is solved by design of paths of equal lengths. The starting point of the solution is the well-known Dubins path which is composed of circular arcs and line segments, thus requiring only one simple manoeuvre - constant rate turn. An explicit bound can be imposed on the rate during the design and the resulting paths are the minimum time solution of the problem. However, transition between arc and line segment entails discontinuous changes in lateral accelerations (latax), making this approach impractical for real fixed wing UAVs. Therefore, the Dubins solution is replaced with clothoid and also a novel one, based on quintic Pythagorean Hodograph (PH) curves, whose latax demand is continuous. The clothoid solution is direct as in the case of the Dubins path. The PH path is chosen for its rational functional form. The clothoid and the PH paths are designed to have lengths close to the lengths of the Dubins paths to stay close to the minimum time solution. To derive the clothoid and the PH paths that way, the Dubins solution is first interpreted in terms of Differential Geometry of curves using the path length and curvature as the key parameters. The curvature of a Dubins path is a piecewise constant and discontinuous function of its path length, which is a differential geometric expression of the discontinuous latax demand involved in transitions between the arc and the line segment. By contrast, the curvature of the PH path is a fifth order polynomial of its path length. This is not only continuous, also has enough design parameters (polynomial coefficients) to meet the latax (curvature) constraints (bounds) and to make the PH solution close to the minimum time one. The offset curves of the PH path are used to design a safety region along each path. The solution is simplified by dividing path planning into two phases. The first phase produces flyable paths while the second phase produces safe paths. Three types of paths are used: Dubins, clothoid and Pythagorean Hodograph (PH). The paths are produced both in 2D and 3D. In two dimensions, the Dubins path is generated using Euclidean and Differential geometric principles. It is shown that the principles of Differential geometry are convenient to generalize the path with the curvature. Due to the lack of curvature continuity of the Dubins path, paths with curvature continuity are considered. In this respect, initially the solution with the Dubins path is extended to produce clothoid path. Latter the PH path is produced using interpolation technique. Flyable paths in three dimensions are produced with the spatial Dubins and PH paths. In the second phase, the flyable paths are tuned for simultaneous arrival on target. The simultaneous arrival is achieved by producing the paths of equal lengths. Two safety conditions: (i) minimum separation distance and (ii) non-intersection of paths at equal distance are defined to maneuver in free space. In a cluttered space, an additional condition, threat detection and avoidance is defined to produce safe paths. The tuning is achieved by increasing the curvature of the paths and by creating an intermediate way-point. Instead of imposing safety constraints, the flyable paths are tested for meeting the constraints. The path is replanned either by creating a new way-point or by increasing the curvature between the way-points under consideration. The path lengths are made equal to that of a reference path.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Radar cross section modelling using genetic algorithms
    (2009-03-12T16:12:26Z) Hughes, Evan J.; White, Brian A.; Leyland, M.
    In the design of new, more sophisticated missile systems, simulations need to be realistic and fast. Realistic target models are just as important as realistic models of the missile, but have often been overlooked in the past. Existing methods for creating realistic target models require considerable computational resources. This thesis addresses the problem of using limited resources to create realistic target models for simulating engagements with radar guided homing missiles. A multiple genetic algorithm approach is presented for converting inverse synthetic aperture radar images of targets into scatterer models. The models produced are high fidelity and fast to process. Results are given that demonstrate the generation of a model from real data using a desktop computer. Realistic models are used to investigate the effects of target fidelity on the missile performance. The results of the investigation allow the model complexity to be traded against the fidelity of the representation to optimise simulation speed. Finally, a realistic target model is used in a feasibility study to investigate the potential use of glint for target manoeuvre detection. Target glint is considered as noise in conventional missile systems and filtered to reduce its effects on the tracking performance- The use of glint for target manoeuvre detection would provide a cheap and novel alternative to the optical techniques currently being developed. The feasibility study has shown that target manoeuvre detection using glint may be as fast as optical techniques and very reliable.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Sensors, measurement fusion and missile trajectory optimisation
    (Cranfield University; College of Defence Technology; Department of Aerospace, Power and Sensors, 2003-07) Moody, Leigh; White, Brian A.
    When considering advances in “smart” weapons it is clear that air-launched systems have adopted an integrated approach to meet rigorous requirements, whereas air-defence systems have not. The demands on sensors, state observation, missile guidance, and simulation for air-defence is the subject of this research. Historical reviews for each topic, justification of favoured techniques and algorithms are provided, using a nomenclature developed to unify these disciplines. Sensors selected for their enduring impact on future systems are described and simulation models provided. Complex internal systems are reduced to simpler models capable of replicating dominant features, particularly those that adversely effect state observers. Of the state observer architectures considered, a distributed system comprising ground based target and own-missile tracking, data up-link, and on-board missile measurement and track fusion is the natural choice for air-defence. An IMM is used to process radar measurements, combining the estimates from filters with different target dynamics. The remote missile state observer combines up-linked target tracks and missile plots with IMU and seeker data to provide optimal guidance information. The performance of traditional PN and CLOS missile guidance is the basis against which on-line trajectory optimisation is judged. Enhanced guidance laws are presented that demand more from the state observers, stressing the importance of time-to-go and transport delays in strap-down systems employing staring array technology. Algorithms for solving the guidance twopoint boundary value problems created from the missile state observer output using gradient projection in function space are presented. A simulation integrating these aspects was developed whose infrastructure, capable of supporting any dynamical model, is described in the air-defence context. MBDA have extended this work creating the Aircraft and Missile Integration Simulation (AMIS) for integrating different launchers and missiles. The maturity of the AMIS makes it a tool for developing pre-launch algorithms for modern air-launched missiles from modern military aircraft.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Unmanned aerial vehicle route planning on a dynamically changing waypoint based map for exploration purposes
    (2009-12-17T00:00:00Z) Kladis, Georgios P.; Economou, John T.; Tsourdos, Antonios; White, Brian A.; Knowles, Kevin
    In the included work the Unmanned Aerial Vehicle (UAV) mission is represented by energy graphs motivated by the analysis in [1]. The problem of the shortest path routing is revisited when a dynamically changing environment is considered. It is assumed that information about the map is received while on flight due to events. In addition, UAVs are required, while on mission, to "scout" areas of interest which involves extracting as much intelligence as possible and traversing it in the most safe flyable means. Hence, the UAV should be capable of integrating knowledge from a variety of sources and re-plan its mission accordingly in order to fulfil objectives. Motivated by the previous, depending on the decision making process, the notion of a "temporary" optimum path can be of physical and functional sense. The problem is modeled as a multistage decision making process, where each stage is triggered by an event and is characterized by a current starting point, an area for reconnaissance purposes and a final destination. Hence, given the current availability between paths, the objective is to devise a policy that leads from an origin or current known location to a destination node while traversing the unknown region of interest with the minimal energy demand.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback