Browsing by Author "Welch, David"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Improved estimates of 222 nm far-UVC susceptibility for aerosolized human coronavirus via a validated high-fidelity coupled radiation-CFD code(Nature Publishing Group, 2021-10-07) Buchan, Andrew G.; Yang, Liang; Welch, David; Brenner, David J.; Atkinson, Kirk D.Transmission of SARS-CoV-2 by aerosols has played a significant role in the rapid spread of COVID-19 across the globe. Indoor environments with inadequate ventilation pose a serious infection risk. Whilst vaccines suppress transmission, they are not 100% effective and the risk from variants and new viruses always remains. Consequently, many efforts have focused on ways to disinfect air. One such method involves use of minimally hazardous 222 nm far-UVC light. Whilst a small number of controlled experimental studies have been conducted, determining the efficacy of this approach is difficult because chamber or room geometry, and the air flow within them, influences both far-UVC illumination and aerosol dwell times. Fortunately, computational multiphysics modelling allows the inadequacy of dose-averaged assessment of viral inactivation to be overcome in these complex situations. This article presents the first validation of the WYVERN radiation-CFD code for far-UVC air-disinfection against survival fraction measurements, and the first measurement-informed modelling approach to estimating far-UVC susceptibility of viruses in air. As well as demonstrating the reliability of the code, at circa 70% higher, our findings indicate that aerosolized human coronaviruses are significantly more susceptible to far-UVC than previously thought.Item Open Access Inactivation rates for airborne human coronavirus by low doses of 222nm far-UVC radiation(MDPI, 2022-03-25) Welch, David; Buonanno, Manuela; Buchan, Andrew G.; Yang, Liang; Atkinson, Kirk D.; Shuryak, Igor; Brenner, David J.Recent research using UV radiation with wavelengths in the 200–235 nm range, often referred to as far-UVC, suggests that the minimal health hazard associated with these wavelengths will allow direct use of far-UVC radiation within occupied indoor spaces to provide continuous disinfection. Earlier experimental studies estimated the susceptibility of airborne human coronavirus OC43 exposed to 222-nm radiation based on fitting an exponential dose–response curve to the data. The current study extends the results to a wider range of doses of 222 nm far-UVC radiation and uses a computational model coupling radiation transport and computational fluid dynamics to improve dosimetry estimates. The new results suggest that the inactivation of human coronavirus OC43 within our exposure system is better described using a bi-exponential dose–response relation, and the estimated susceptibility constant at low doses—the relevant parameter for realistic low dose rate exposures—was 12.4 ± 0.4 cm2/mJ, which described the behavior of 99.7% ± 0.05% of the virus population. This new estimate is more than double the earlier susceptibility constant estimates that were based on a single-exponential dose response. These new results offer further evidence as to the efficacy of far-UVC to inactivate airborne pathogens.