Browsing by Author "Webb, Philip"
Now showing 1 - 18 of 18
Results Per Page
Sort Options
Item Open Access Aircraft wing build philosophy change through system pre-equipping of major components(Society of Automotive Engineers, 2016-09-27) Judt, David M.; Forster, Kevin; Lockett, Helen L.; Lawson, Craig P.; Webb, PhilipIn the civil aircraft industry there is a continuous drive to increase the aircraft production rate, particularly for single aisle aircraft where there is a large backlog of orders. One of the bottlenecks is the wing assembly process which is largely manual due to the complexity of the task and the limited accessibility. The presented work describes a general wing build approach for both structure and systems equipping operations. A modified build philosophy is then proposed, concerned with large component pre-equipping, such as skins, spars or ribs. The approach benefits from an offloading of the systems equipping phase and allowing for higher flexibility to organize the pre-equipping stations as separate entities from the overall production line. Its application is presented in the context of an industrial project focused on selecting feasible system candidates for a fixed wing design, based on assembly consideration risks for tooling, interference and access. Further industrial, human and cost factors are discussed to establish project competiveness. The main findings show a potential to reduce assembly time of systems equipping operations by 30% together with a lower ergonomic impact score. The paper also presents design rules derived from the case study towards a system design for a pre-equipping build philosophy. Primarily, cross component interfaces should be avoided as much as possible. Access for phase one structural operations need to be considered as well as major component jig pickup points. To increase system installation independence, layout considerations of components should lead to sufficient access to all components at any installation stage.Item Open Access Contactless medium scale industrial robot collaboration(OMICS International, 2016-03-11) Asif, Seemal; Webb, PhilipThe growing cost of High-Value/Mix and Low Volume (HMLV) industries like Aerospace is heavily based on industrial robots and manual operations done by operators [1]. Robots are excellent in repeatability by HMLV industries need changes with every single product. On the other hand human workforce is good at variability and intelligence but cost a lot as production rate is not comparable to robots and machines. There are flexible systems which have been specifically introduced for this type of industry FLEXA is one of them. But still there is need of collaboration between human and robot to get the flexible and cost effective solution [2]. A comprehensive survey has been conducted specifically on the issue of Human Robot collaboration [3] which laid out many advantages of this approach includes flexibility, cost-effectiveness and use of robot as intelligent assistant. There are several attempts have been made for Human Robot Collaboration for HMLV industry and Chen et al. attempt is one of them.Item Open Access Delamination migration in CFRP laminates under mode I loading(Elsevier, 2020-02-10) Ramji, Amit; Xu, Yigeng; Yasaee, Mehdi; Grasso, Marzio; Webb, PhilipThis paper focuses on the effect of interfacial fibre orientation and interleaved veil on the delamination migration of carbon fibre reinforced polymer laminates under Mode I loading. Double cantilever beam specimens with midplane interfacial fibre orientations of 0/0, 90/90, 0/90, 0/45 and 90/45 were tested under two conditions: one with interleaved thermoplastic polyphenylene sulfide veil at the midplane and one without. Results show that, except for the 0/0 configuration, all other orientations exhibit varying levels of migration associated with the interfacial fibre orientation and veil interleaving. The apparent fracture toughness determined with the modified compliance calibration method is closely related to the delamination migration and hence a structural energy dissipation measure dependent on interfacial fibre orientation and the interleaved veil. Distributions of the fibre and matrix materials around the delamination front are found to be closely related to the delamination migration behaviour along its path. The experimental observation and rationalisation presented in this paper provide further knowledge regarding delamination migration and its correlation to the apparent fracture toughness, which is of direct relevance to the damage tolerance design of laminated composite componentsItem Open Access The development of a Human Factors Readiness Level tool for implementing industrial human-robot collaboration(Springer, 2017-01-06) Charalambous, George; Fletcher, Sarah R.; Webb, PhilipThe concept of industrial human-robot collaboration (HRC) is becoming increasingly attractive as a means for enhancing manufacturing productivity and product. However, due to traditional preventive health and safety standards, there have been few operational examples of true HRC, so it has not been possible to explore the organisational human factors that need to be considered by manufacturing organisations to realise the benefits of industrial HRC until recently. Charalambous, Fletcher and Webb (2015) made the first attempt to identify the key organisational human factors for the successful implementation of industrial HRC through an industrial exploratory case study. This work enabled (i) development of a theoretical framework of key organisational human factors relevant to industrial HRC and (ii) identification of these factors as enablers or barriers. Although identifying the key organisational human factors (HF) was an important step, it presented a crucial question: when should practitioners involved in HRC design and implementation consider these factors? New industrial processes are typically designed and implemented using a maturity or readiness evaluation system, but these do not incorporate of or link to any formal considerations of HF. The aim of this paper is to expand on the previous findings and link the key human factors in the theoretical framework directly to a recognised industrial maturity readiness level system to develop a new Human Factors Readiness Level (HFRL) tool for system design practitioners to optimise successful implementation of industrial HRC.Item Open Access Development of a human factors roadmap for the successful implementation of industrial human-robot collaboration(Springer, 2016-07-10) Fletcher, Sarah R.; Webb, Philip; Charalambous, GeorgeThe concept of industrial human-robot collaboration (HRC) is becoming increasingly integrated into manufacturing production lines as a means for enhancing productivity and product quality. However, developments have focused primarily on the technology and, until recently, little research has been geared to understand the key human factors (HF) that need to be considered to enable successful implementation of industrial HRC. Recent work by the authors has led to the identification of key organisational and individual level HF. The purpose of this paper is to draw together the evidence from their studies and propose a HF roadmap for the successful implementation of industrial HRC. The roadmap will have profound implications as it enables automation specialists and manufacturing system engineers to understand the key HF that need to be considered optimise the efficiency and productivity of the collaboration between humans and industrial robots.Item Open Access Digitisation of a moving assembly operation using multiple depth imaging sensors(Springer, 2015-10-09) Prabhu, Vinayak Ashok; Song, Boyang; Thrower, John; Tiwari, Ashutosh; Webb, PhilipSeveral manufacturing operations continue to be manual even in today’s highly automated industry because the complexity of such operations makes them heavily reliant on human skills, intellect and experience. This work aims to aid the automation of one such operation, the wheel loading operation on the trim and final moving assembly line in automotive production. It proposes a new method that uses multiple low-cost depth imaging sensors, commonly used in gaming, to acquire and digitise key shopfloor data associated with the operation, such as motion characteristics of the vehicle body on the moving conveyor line and the angular positions of alignment features of the parts to be assembled, in order to inform an intelligent automation solution. Experiments are conducted to test the performance of the proposed method across various assembly conditions, and the results are validated against an industry standard method using laser tracking. Some disadvantages of the method are discussed, and suggestions for improvements are suggested. The proposed method has the potential to be adopted to enable the automation of a wide range of moving assembly operations in multiple sectors of the manufacturing industry.Item Open Access Effect of interfacial fibre orientation and PPS veil density on delamination resistance of 5HS woven CFRP laminates under mode II loading(Elsevier, 2021-02-19) Ramji, Amit; Xu, Yigeng; Grasso, Marzio; Yasaee, Mehdi; Webb, PhilipThis paper presents an experimental study on the effect of interfacial fibre orientation and interleaved thermoplastic veil on Mode II interlaminar fracture toughness of 5-harness satin woven carbon fibre reinforced polymer composite laminates. Three-point End-Notched Flexure tests were carried out to determine delamination resistance, GIIC, of specimens with five fibre orientation biases and two veil densities at the midplane. Results show that delamination resistance of 5-harness satin woven laminates depends on the layup configurations at the midplane with 90/45 fibre orientation bias exhibiting the greatest resistance. The delamination resistance enhancement from polyphenylene sulfide (PPS) veil interleaves is also fibre orientation dependent but a further increase of the veil density from 10 gm−2 to 20 gm−2 offers little extra benefit. Fracture surface morphologies were examined under SEM to understand the failure mechanism and fracture process of the woven laminate under the combined effects of the interfacial fibre orientation and the veil density. Fibre orientation relative to the delamination path, surface texture misfit, and veil density are the three main contributors identified for the variation of delamination resistance of 5HS woven laminates.Item Open Access Enhanced bondline thickness analysis for non-rigid airframe structural assemblies(2019-05-13) Mato, Pablo Coladas; Webb, Philip; Xu, Yigeng; Graham, Daniel; Portsmore, Andrew; Preston, EdwardAdhesive bonding is a proven alternative to mechanical fasteners for structural assembly, offering lighter and thus more fuel efficient aircraft and cost-effective manufacturing processes. The effective application of bonded structural assemblies is however limited by the tight fit-up requirement, which is with sub-mm tolerance and can be a challenge for the industry to meet considering the variability of current part manufacturing methods and the conservative nature of the conventional tolerance stack-up analysis method. Such a challenge can discourage effective exploitation of bonding technologies, or lead to development of overengineered solutions for assurance. This paper addresses this challenge by presenting an enhanced bondline thickness variation analysis accounting for part deflection of a bonded skin-stringer assembly representing a typical non-rigid airframe structure. A semi-analytical model accounting for unilateral contact and simplified 1D adhesive flow has been developed to predict bondline thickness variation of the assembly under two typical curing conditions: namely autoclave curing and out-of-autoclave curing. The effects of component stiffness and manufacturing variations on bondline thickness are investigated by incorporating stringers of different stiffness, as well as shims of different thicknesses in-between the skin and stringer, in the stringer-skin assembly. A small-scale bonding demonstrator has been built and the physical results are in good agreement with the model prediction. It has been demonstrated that the part deflections need to be accounted for regarding fit-up requirement of bonded non-rigid structural assembly. The semi-analytical model offers more reliable and realistic prediction of bondline thickness when compared to a rigid tolerance stack-up. The analysis method presented can be a major technology enabler for faster, more economical development of the aircraft of the future, as well as of any analogue structures with high aspect ratios where weight savings and fatigue performance may be key objectives.Item Open Access Enhanced cell controller for aerospace manufacturing(OMICS International, 2016-04-30) Asif, Seemal; Webb, PhilipAerospace manufacturing industry is unique in that production typically focuses on high variety and quality but extremely low volume. Manufacturing processes are also sometimes unique and not repeatable and, hence, costly. Production is getting more expensive with the introduction of industrial robots and their cells. This paper describes the development of the Flexa Cell Coordinator (FCC), a system that is providing a solution to manage resources at assembly cell level. It can control, organise and coordinate between the resources and is capable of controlling remote cells and resources because of its distributed nature. It also gives insight of a system to the higher management via its rich reporting facility and connectivity with company systems e.g., Enterprise Resource Planner (ERP). It is able to control various kinds of cells and resources (network based) which are not limited to robots and machines. It is extendable and capable of adding multiple numbers of cells inside the system. It also provides the facility of scheduling the task to avoid the deadlocking in the process. In FCC resources (e.g., tracker) can also be shared between cells.Item Open Access Evaluating the use of human aware navigation in industrial robot arms(Walter de Gruyter, 2021-08-27) Story, Matthew; Jaksic, Cyril; Fletcher, Sarah R.; Webb, Philip; Tang, Gilbert; Carberry, JonathanAlthough the principles followed by modern standards for interaction between humans and robots follow the First Law of Robotics popularized in science fiction in the 1960s, the current standards regulating the interaction between humans and robots emphasize the importance of physical safety. However, they are less developed in another key dimension: psychological safety. As sales of industrial robots have been increasing over recent years, so has the frequency of human–robot interaction (HRI). The present article looks at the current safety guidelines for HRI in an industrial setting and assesses their suitability. This article then presents a means to improve current standards utilizing lessons learned from studies into human aware navigation (HAN), which has seen increasing use in mobile robotics. This article highlights limitations in current research, where the relationships established in mobile robotics have not been carried over to industrial robot arms. To understand this, it is necessary to focus less on how a robot arm avoids humans and more on how humans react when a robot is within the same space. Currently, the safety guidelines are behind the technological advance, however, with further studies aimed at understanding HRI and applying it to newly developed path finding and obstacle avoidance methods, science fiction can become science fact.Item Open Access Human-automation collaboration in manufacturing: identifying key implementation factors(Cranfield University Press, 2013-09-19) Charalambous, George; Fletcher, Sarah R.; Webb, PhilipHuman-automation collaboration refers to the concept of human operators and intelligent automation working together interactively within the same workspace without conventional physical separation. This concept has commanded significant attention in manufacturing because of the potential applications, such as the installation of large sub-assemblies. However, the key human factors relevant to human-automation collaboration have not yet been fully investigated. To maximise effective implementation and reduce development costs for future projects these factors need to be examined. In this paper, a collection of human factors likely to influence human-automation collaboration are identified from current literature. To test the validity of these and explore further factors associated with implementation success, different types of production processes in terms of stage of maturity are being explored via industrial case studies from the project’s stakeholders. Data was collected through a series of semi-structured interviews with shop floor operators, engineers, system designers and management personnel.Item Open Access An improved cell controller for the aerospace manufacturing(Cranfield University Press, 2013-09-19) Asif, Seemal; Webb, PhilipThe aerospace manufacturing industry is unique in that production typically focuses on high variety and quality but low volume. Existing flexible manufacturing cells are limited to certain types of machines, robots and cells which makes it difficult to introduce any changes. In this paper idea of treating machines, robots, any hardware and software as resource has been introduced. It describes the development of the Flexa Cell Coordinator (FCC), a system that is providing a solution to manage cells and their resources in a new flexible manner. It can control, organise and coordinate between cells and resources and is capable of controlling remote cells because of its distributed nature. It also provides connectivity with company systems e.g., Enterprise Resource Planner (ERP). It is extendable and capable of adding multiple cells inside the system. In FCC resources (e.g., tracker) can also be shared between cells. The paper presents its development and results of initial successful testing.Item Open Access Industrial robot ethics: facing the challenges of human-robot collaboration in future manufacturing systems(Springer, 2017-01-07) Fletcher, Sarah R.; Webb, PhilipAs a result of significant advances in information and communications technology the manufacturing industry is facing revolutionary changes whereby production processes will become increasingly digitised and interconnected cyber-physical systems. A key component of these new complex systems will be intelligent automation and human-robot collaboration. Industrial robots have traditionally been segregated from people in manufacturing systems because of the dangers posed by their operational speeds and heavy payloads. However, advances in technology mean that we will soon see large-scale robots being deployed to work more closely and collaboratively with people in monitored manufacturing sytems and widespread introduction of small-scale robots and assistive robotic devices. This will not only transform the way people are expected to work and interact with automation but will also involve much more data provision and capture for performance monitoring. This paper discusses the background to these developments and the anticipated ethical issues that we now face as people and robots become able to work collaboratively in industry.Item Open Access Investigating the effects of signal light position on human workload and reaction time in human-robot collaboration tasks(Springer, 2016-07-10) Johnson, Teegan L.; Fletcher, Sarah R.; Webb, PhilipCritical to a seamless working relationship in human-robot collaborative environments is effective and frequent communication. This study looked to assess whether placing a light source on a robot was more effective for informing the human operator of the status of the robot than conventional human-machine interfaces for industrial system signaling such as light towers. Participants completed an assembly task while monitoring a robot and changes to the light sources: either from one of two light towers or LED strip lights attached to the robot. Workload was assessed by measuring reaction times to light changes and by counting number of completed assemblies. Although both the ANOVA and Friedman tests returned none significant results, total misses per condition showed that the participants did not miss any of the robot lights, whereas signals were missed for the light towers.Item Open Access Kinematics analysis of 6-DoF articulated robot with spherical wrist(Hindawi Publishing Corporation, 2021-02-02) Asif, Seemal; Webb, PhilipThe aim of the paper is to study the kinematics of the manipulator. The articulated robot with a spherical wrist has been used for this purpose. The Comau NM45 Manipulator has been chosen for the kinematic model study. The manipulator contains six revolution joints. Pieper’s approach has been employed to study the kinematics (inverse) of the robot manipulator. Using this approach, the inverse kinematic problem is divided into two small less complex problems. This reduces the time of analysing the manipulator kinematically. The forward and inverse kinematics has been performed, and mathematical solutions are detailed based on D-H (Denavit–Hartenberg) parameters. The kinematics solution has been verified by solving the manipulator’s motion. It has been observed that the model is accurate as the motion trajectory was smoothly followed by the manipulator.Item Open Access Measurement assisted robotic edge deburring of aero engine components(Wseas, 2010-03-31T00:00:00Z) Jayaweera, Nirosh; Webb, PhilipAero engine components are often subjected to high stress levels and vibrations during operation. The mechanical integrity of these machined components may be compromised by the presence of burrs and sharp edges. Therefore the removal of burrs and the creation of rounded edges is necessary. To do this manually is time consuming and costly and may have potential quality issues. The application of robots to deburring has been limited by the difficulties in achieving the required degree of quality, controlling reaction forces during metal removal and the lack of tooling designed specifically for robots. The work presented in this paper introduces an efficient robotic deburring method, which is developed based on generation real-time robotic deburring path. The approach uses an in-process measurement sensor to determine the component's exact location prior to the deburring operation. The core of the system is a set of algorithms capable of fitting and generating the required robot path relative to the feature to be profiled. Reducing the reliance on accurate dedicated part holding fixtures and uses laser guided robot ensures the developed deburring system is highly flexible and re-configurable. The paper describes the development of deburring process for a simple straight edge feature and its application to more complex ones. The algorithms were evaluated using representative test pieces made from Titanium, RR1000 and super CMV alloys using a spindle attached to an industrial robot.Item Open Access Networked control system – an overview(Foundation of Computer Science, 2015-04-22) Asif, Seemal; Webb, PhilipNetworked Control System (NCS) is fetching researchers’ interest from many decades. It’s been used in industry which range from manufacturing, automobile, aviation, aerospace to military. This paper gives the general architecture of NCS and its fundamental routes. It also touches to its advantages and disadvantages and some of the popular controller which include PID (Proportional-Integral-Derivative) and MPC (Model Predictive Control).Item Open Access Software system integration - Middleware - an overview(Foundation of Computer Science, 2015-07-01) Asif, Seemal; Webb, PhilipThe integration of different softwares written in different language and based on different platforms can be tricky. In that situation a middleware is necessary to enable the communication between different softwares. The middleware enables the software system not only to share data but also share the services. This paper gives an overview of some of middleware technologies which can be used to integrate different software systems.