CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Valente, Goncalo"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Advancement in design and failure analysis of aluminium foam-filled honeycomb crash absorbers
    (Springer, 2023-03-01) Valente, Goncalo; Ghasemnejad, Hessam; Srimanosaowapak, S.; Watson, James W.
    Honeycomb structures are frequently used as energy absorption devices in the automotive and aerospace industry. Many studies have been conducted to optimise these structures and improve crashworthiness behaviour. This paper attempts to improve the crashworthiness behaviour of a honeycomb crash box by filling the cells with open-cell aluminium foams. Experimental tests were conducted to develop the honeycomb and aluminium foam material model and, also, to validate the finite element model by experimental data. The finite element model was developed in ABAQUS, and different variables were parameterised to aim a quick implementation. The empty aluminium honeycomb crash box is used as a term of comparison with the foam-filled ones. Foam-filling the crash box allows the control of the densification zone for different impact energies using open-cell aluminium foam, which shows the main novelty of this research. In the end, the optimised structure is presented concerning the optimum number of foam-filled cells and, also, to the aluminium foam’s density that best fits this application.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Aluminium foam-filled honeycomb crash absorbers
    (Trans Tech Publications, 2023-04-06) Valente, Goncalo; Ghasemnejad, Hessam; Srimanosaowapa, Sompong
    Honeycomb structures are frequently used as energy absorption devices in the automotive and aerospace industry. Many studies have been conducted to optimise these structures and improve crashworthiness behaviour. This paper attempts to improve the crashworthiness behaviour of a honeycomb crash box by filling the cells with open-cell aluminium foams. Experimental tests were conducted to develop the honeycomb and aluminium foam material model and, also, to validate the finite element model by experimental data. Foam-filling the crash box allows the control of the densification zone for different impact energies using open-cell aluminium foam, which shows the main novelty of this research. In the end, the optimised structure is presented concerning the optimum number of foam-filled cells and, also, to the aluminium foam’s density that best fits this application.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback