Browsing by Author "Vale, Peter"
Now showing 1 - 17 of 17
Results Per Page
Sort Options
Item Open Access Carbon dioxide utilisation in anaerobic digesters as an on-site carbon revalorisation strategy(Cranfield University, 2014-11) Bajón Fernández, Yadira; Cartmell, Elise; Soares, Ana; Vale, PeterThe increasing carbon footprint of the water and organic waste sectors has led to water utilities to voluntarily include carbon mitigation approaches within their strategic plans and to an increase in research aimed at mitigating carbon dioxide (CO2) emissions. Injection of CO2 in anaerobic digesters (ADs) for its bioconversion into methane (CH4) has been identified as a potential solution. However, previous literature provided limited knowledge of the carbon benefits obtainable and presented conflicting information regarding the mechanisms of CO2 utilisation. This thesis investigated the potential of injecting exogenous CO2 into ADs for its bioconversion into CH4 to reduce CO2 emissions from water and organic waste facilities. Batch laboratory scale and continuous pilot-scale ADs enriched with CO2 were operated. A substrate dependant response to exogenous CO2 was reported for the first time and potential CO2 savings of up to 34% and 11% were estimated for sewage sludge and food waste batch ADs, respectively, injected with CO2 before the digestion process. Higher benefits in CH4 production were observed in sewage sludge ADs than in food waste units. An up to 2.4 fold increase in CH4 production during the 24 hours following saturation with CO2 was obtained in sewage sludge units, while benefit was limited to 1.16 fold in food waste ADs. Microbial community analyses were performed to elucidate CO2 fate mechanisms. An increase of up to 80% in the activity of Methanosaetaceae (obligate acetoclastic methanogen) was observed in sewage sludge ADs periodically enriched with CO2. Methanosaetaceae was scarce (4.3±1.7%) in food waste units, which was attributed to an inhibitory concentration of ammonia (4 gL-1 NH4-N). Based on Archaea analyses and on monitoring hydrogen (H2) and volatile fatty acids (VFA) speciation dynamics in a pilot-scale AD, it was proposed that exogenous CO2 is reduced by homoacetogenesis (Wood-Ljungdahl mechanism) and the acetate generated by this route is converted to CH4 by acetoclastic methanogenesis. Gas to liquid mass transfer was identified as limiting of the amount of dissolved CO2 loaded to an AD and the complex rheology of anaerobically digested media as detrimental for transfer performance. An increase of apparent viscosity (μa) from 130 to 340 cPo (typical variability of sewage sludge) reduced gas transfer efficiency (GTE) by 6 percentage points. The use of bubble columns was identified as suitable for further scaled-up units. Injection of CO2 could be performed in the digestate recirculation loop of single phase ADs or in the first phase of two phase ADs (TPADs), with CO2 sourced from off-gas of biogas upgrading technologies. It has been demonstrated that bioconversion of CO2 in ADs can reduce carbon footprint and increase CH4 production, with the possibility of becoming an on-site carbon revalorisation strategy.Item Open Access Characterisation and control of the biosolids storage environment: Implications for E. coli dynamics(Elsevier, 2020-08-15) Fane, Sarah Elizabeth; Nocker, Andreas; Vale, Peter; Rivas Casado, Monica; Cartmell, Elise; Harris, Jim A.; Bajón Fernández, Yadira; Tyrrel, Sean F.E. coli survival in biosolids storage may present a risk of non-compliance with guidelines designed to ensure a quality product safe for agricultural use. The storage environment may affect E. coli survival but presently, storage characteristics are not well profiled. Typically biosolids storage environments are not actively controlled or monitored to support increased product quality or improved microbial compliance. This two-phased study aimed to identify the environmental factors that control bacterial concentrations through a long term, controlled monitoring study (phase 1) and a field-scale demonstration trial modifying precursors to bacterial growth (phase 2). Digested and dewatered biosolids were stored in operational-scale stockpiles to elucidate factors controlling E. coli dynamics. E. coli concentrations, stockpile dry solids, temperature, redox and ambient weather data were monitored. Results from ANCOVA analysis showed statistically significant (p < 0.05) E. coli reductions across storage periods with greater die-off in summer months. Stockpile temperature had a statistically significant effect on E. coli survival. A 4.5 Log reduction was measured in summer (maximum temperature 31 °C). In the phase 2 modification trials, covered stockpiles were able to maintain a temperature >25 °C for a 28 day period and achieved a 3.7 Log E. coli reduction. In winter months E. coli suppression was limited with concentrations >6 Log10 CFU g−1 DS maintained. The ANCOVA analysis has identified the significant role that physical environmental factors, such as stockpile temperature, has on E. coli dynamics and the opportunities for controlItem Open Access Chemically reactive membrane crystallisation reactor for CO2–NH3 absorption and ammonium bicarbonate crystallisation: Kinetics of heterogeneous crystal growth(Elsevier, 2019-11-22) Bavarella, Salvatore; Brookes, Adam; Moore, Andrew; Vale, Peter; Di Profio, Gianluca; Curcio, Efrem; Hart, Phil; Pidou, Marc; McAdam, Ewan J.The feasibility of gas-liquid hollow fibre membrane contactors for the chemical absorption of carbon dioxide (CO2) into ammonia (NH3), coupled with the crystallisation of ammonium bicarbonate has been demonstrated. In this study, the mechanism of chemically facilitated heterogeneous membrane crystallisation is described, and the solution chemistry required to initiate nucleation elucidated. Induction time for nucleation was dependent on the rate of CO2 absorption, as this governed solution bicarbonate concentration. However, for low NH3 solution concentrations, a reduction in pH was observed with progressive CO2 absorption which shifted equilibria toward ammonium and carbonic acid, inhibiting both absorption and nucleation. An excess of free NH3 buffered pH suitably to balance equilibria to the onset of supersaturation, which ensured sufficient bicarbonate availability to initiate nucleation. Following induction at a supersaturation level of 1.7 (3.3 M NH3), an increase in crystal population density and crystal size was observed at progressive levels of supersaturation which contradicts the trend ordinarily observed for homogeneous nucleation in classical crystallisation technology, and demonstrates the role of the membrane as a physical substrate for heterogeneous nucleation during chemically reactive crystallisation. Both nucleation rate and crystal growth rate increased with increasing levels of supersaturation. This can be ascribed to the relatively low chemical driving force imposed by the shift in equilibrium toward ammonium which suppressed solution reactivity, together with the role of the membrane in promoting counter-current diffusion of CO2 and NH3 into the concentration boundary layer developed at the membrane wall, which permitted replenishment of reactants at the site of nucleation, and is a unique facet specific to this method of membrane facilitated crystallisation. Free ammonia concentration was shown to govern nucleation rate where a limiting NH3 concentration was identified above which crystallisation induced membrane scaling was observed. Provided the chemically reactive membrane crystallisation reactor was operated below this threshold, a consistent (size and number) and reproducible crystallised reaction product was collected downstream of the membrane, which evidenced that sustained membrane operation should be achievable with minimum reactive maintenance intervention.Item Open Access Coagulation–flocculation process with metal salts, synthetic polymers and biopolymers for the removal of trace metals (Cu, Pb, Ni, Zn) from municipal wastewater(Springer, 2018-07-02) Hargreaves, Andrew J.; Vale, Peter; Whelan, Jonathan; Alibardi, Luca; Constantino, Carlos; Dotro, Gabriela; Cartmell, EliseTo ensure compliance with regulatory standards, it is important to examine the potential of treatment technologies to enhance trace metal removal from wastewater. This study investigated the effectiveness of coagulation–flocculation at removing trace metals from humus effluent with ferric chloride (FeCl3), the synthetic polymer polyethyleneimine (PEI) and the biopolymers chitosan and floculan. Effluent samples were collected from a trickling filter treatment works operating in the UK and contained 21 ± 4 μg/L Cu, 0.8 ± 0.1 μg/L Pb, 4 ± 1 μg/L Ni and 43 ± 9 μg/L Zn. The influence of coagulant dosage and the velocity and time of the slow mixing stage were studied via a series of jar tests. Chitosan and PEI had a moderate effect on the removal of trace metals (≤ 35%). FeCl3 removed 48% Cu, 56% Pb and 41% Zn at the optimised dose of 0.10 mg/L. At the optimised dose of 0.25 mg/L, floculan removed 77% Cu, 68% Pb and 42% Zn. The dominant mechanism for particle removal by FeCl3 was enmeshment in the precipitates (i.e. sweep flocculation), whereas, for floculan, inter-particle bridging was the dominant removal mechanism. Overall, FeCl3 and floculan were found to be most effective at removing trace metals from wastewater.Item Open Access Data supporting: 'CO2 absorption into aqueous ammonia using membrane contactors: Role of solvent chemistry and pore size on solids formation for low energy solvent regeneration'(Cranfield University, 2022-10-13 16:42) Bavarella, Salvatore; Luqmani, Benjamin A.; Thomas, Navya; Brookes, Adam; Moore, Andrew; Vale, Peter; Pidou, Marc; McAdam, EwanSolids formation can substantially reduce the energy penalty for ammonia solvent regeneration in carbon capture and storage (CCS), but has been demonstrated in the literature to be difficult to control. This study examines the use of hollow fibre membrane contactors, as this indirect contact mediated between liquid and gas phases in this geometry could improve the regulation of solids formation. Adoption of a narrower pore size membrane was shown to dissipate wetting after crystallisation in the solvent, illustrating membrane contactors as a stable platform for the sustained separation of CO2 coupled with its simultaneous transformation into a solid. Through resolving previous challenges experienced with solids formation in multiple reactor configurations, the cost benefit of using ammonia as a solvent can be realised, which is critical to enabling economically viable CCS for the transition to net zero, and can be exploited within hollow fibre membrane contactors, eliciting considerable process intensification over existing reactor designs for CCS.Item Open Access Demonstrating commercial hollow fibre membrane contactor performance at industrial scale for biogas upgrading at a sewage treatment works(MDPI, 2021-01-13) Houlker, Sam; Rutherford, Tony; Herron, Daniel; Brookes, Adam; Moore, Andrew; Vale, Peter; Pidou, Marc; McAdam, Ewan J.Hollow fibre membrane contactor (HFMC) technology has been developed for CO2 absorption primarily using synthetic gas, which neglects the critical impact that trace contaminants might have on separation efficiency and robustness in industrial gases. This study, therefore, commissioned a demonstration-scale HFMC for CO2 separation at a full-scale anaerobic digester facility to evaluate membrane integrity over six months of operation on real biogas. The CO2 capture efficiency identified using real biogas was benchmarked at comparable conditions on synthetic gas of an equivalent partial pressure, and an equivalent performance identified. Two HFMC were subsequently compared, one with and one without a pre-treatment stage that targeted particulates, volatile organic compounds (VOCs) and humidity. Similar CO2 separation efficiency was again demonstrated, indicating limited impact within the timescale evaluated. However, gas phase pre-treatment is advised in order to ensure robustness in the long term. Over longer-term operation, a decline in CO2 separation efficiency was observed. Membrane autopsy identified shell-side deposition, where the structural morphology and confirmation of amide I and II groups, indicated biofouling. Separation efficiency was reinstated via chemical cleaning, which demonstrated that proactive maintenance could minimise process risk.Item Open Access Enhancing the anaerobic digestion process through carbon dioxide enrichment: Initial insights into mechanisms of utilisation(Taylor and Francis, 2019-03-19) Bajón Fernández, Yadira; Soares, Ana; Vale, Peter; Koch, Konrad; Masse, Anne Laure; Cartmell, EliseCarbon dioxide (CO2) enrichment of anaerobic digesters (ADs) without hydrogen addition has been demonstrated to provide a potential solution to manage CO2 streams generated in the water and organic waste sectors, with concomitant increases in methane (CH4) production. This study investigates the CO2 utilisation mechanisms, by considering chemical and biological pathways in food waste and sewage sludge ADs. Methanosaetaceae was observed to be the dominant methanogen in sewage sludge ADs (Abundance of 83.8 – 98.8%) but scarce in food waste units (3.5 – 5.8%). Methanosarcinaceae was dominant in food waste (14.3 – 32.4%), likely due to a higher tolerance to the free ammonia nitrogen concentration recorded (885 mg·L-1). Ratios of RMethanosaetaceae (ratio of Methanosaetaceae fluorescence signal between test and control) of 1.45 and 1.79 were observed for sludge ADs enriched once and periodically with CO2, respectively (p-value <0.05), suggesting a higher Methanosaetaceae activity associated with CO2 enrichment. Reduction of CO2 by homoacetogenesis followed by acetoclastic methanogenesis was proposed as a CO2 utilisation mechanism, which requires validation by radiolabelling or carbon isotope analysis.Item Open Access Full-scale trials to achieve low total phosphorus in effluents from sewage treatment works(Elsevier, 2021-02-24) Alibardi, Luca; Vale, Peter; Bajón Fernández, YadiraThe tightening of phosphorus (P) standards has forced the UK water industry to identify options to improve P removal in sewage treatment works. This article presents results of 12-month trials testing three technologies at full-scale: a membrane bioreactor (MBR), a continuous backwash up-flow sand filter (CBUSF) and a high-rate compressible media filter (HRCMF). The aim of the trial was to determine the lowest total phosphorus (TP) concentrations that these systems can consistently achieve under stable operating conditions. MBR is a mature technology combining biological treatment with membrane filtration for solids removal. CBUSF uses granular media deep filtration as removal process while HRCMF uses a synthetic fibre compressible media to retain solids and both technologies are typically applied as tertiary treatments in combination with chemical P removal. The lowest TP effluent concentration was recorded for CBUSF (0.22 mgP/L) while the highest TP removal was recorded for MBR (95 ± 3 %). HRCMF delivered the poorest performance (32 ± 26 % TP removal, 1.7 mgP/L average TP effluent), attributed to limited chemical TP binding and solids removal under the conditions tested. Factors affecting P removal performance during the trial were the identification of the optimal coagulant dose to bind soluble P, the formation of solids that can be removed by the separation unit, insufficient reaction time for the coagulation process and the carryover of coagulant into the final effluent. The trials gave valuable insights to address the implementation of new technologies or upgrade existing assets' performance.Item Open Access The impact of polymer selection and dose on the incorporation of ballasting agents onto wastewater aggregates(Elsevier, 2019-11-28) Murujew, Olga; Geoffroy, Jordan; Fournie, Emeline; Gioacchini, Elisa Socionovo; Wilson, Andrea; Vale, Peter; Jefferson, Bruce; Pidou, MarcBallasted flocculation is an efficient high-rate sedimentation process getting more attention as an advanced P removal technology for levels below 0.1 mg/L. The process is well-known yet only very few studies have investigated the interactions, within the matrix of wastewater, of coagulant, polymer and ballast, especially when it comes to polymer doses and types which are, in the industry, rather based on recommendations than scientific evidence. In this work, the impact of anionic and cationic polymers has been investigated on P removal and floc properties. Anionic polymers showed to be superior to cationic ones when it comes to P removal and doses even as low as 0.01 mg/L yield better results than coagulant alone. There appears to be a “best-case” floc size with which very good P removal (>90%) can be achieved and flocs of sufficient strength can be generated.Item Open Access Impacts of coagulation-flocculation treatment on the size distribution and bioavailability of trace metals (Cu, Pb, Ni, Zn) in municipal wastewater(Elsevier, 2017-10-25) Hargreaves, Andrew J.; Vale, Peter; Whelan, Jonathan; Alibardi, Luca; Constantino, Carlos; Dotro, Gabriela; Cartmell, Elise; Campo, PabloThis study investigated the impact of coagulation-flocculation treatment on metal form and bioavailability in municipal wastewater. Real humus effluent samples were separated into particulate, colloidal and truly dissolved fractions before and after treatment with either ferric chloride (FeCl3) or the biopolymer Floculan. Results revealed that both reagents effectively (≥48%) eliminated Cu, Pb and Zn from the particulate fraction and removed Cu and Zn from the colloidal fraction in conjunction with colloidal organic carbon (COC). Although organics in the truly dissolved fraction were resistant to removal, Floculan reduced Cu in this fraction by 72% owing to the complexation of free Cu ions to phenol and amino groups along the polymeric chains, revealing an additional removal pathway. In fact, COC removed in the CF process by Floculan was replaced with truly dissolved compounds, input as a result of this reagents organic composition. Floculan, therefore, reduced the soluble concentration of Cu and Zn without changing the DOC concentration, thus reducing the bioavailability of these metals in treated effluent. FeCl3 did not reduce the bioavailability of target metals, thus did not deliver any environmental benefit. This work provides important information for the selection and development of high performance coagulants to improve metal removal.Item Open Access Influence of innate sludge factors and ambient environmental parameters in biosolids storage on indicator bacteria survival: A review(Springer, 2019-10-31) Fane, Sarah Elizabeth; Vale, Peter; Bajón Fernández, Yadira; Cartmell, Elise; Harris, Jim A.; Tyrrel, SeanThe potential health risks associated with sludge cake application to agricultural land are managed by controlling the levels of Escherichia coli (E. coli) bacteria which indicate the risk of pathogen transfer. Analyses undertaken following post-digestion sludge dewatering have shown unpredictable levels of E. coli increase in stored sludge cake. Presently there is limited understanding on environmental parameters controlling the indicator bacteria density in storage and the contributory effects dewatering may have. This review aims to establish the state of current knowledge on innate and environmental factors influencing E. coli dynamics and survival in biosolids. A key factor identified is the effect of mechanical dewatering processes, which transform the sludge matrix environmental conditions through the increased availability of growth factors (e.g. nutrient and oxygen). Examples of storage practices from the agricultural and food industries are also discussed as successful methods to inhibit bacterial growth and survival, which could be extrapolated to the biosolids sector to regulate E. coli concentrations.Item Open Access Nutrient removal and recovery from urine using bio-mineral formation processes(American Chemical Society (ACS), 2024-09-26) Colston, Robert E.; Nair, Ajay; Vale, Peter; Hassard, Francis; Stephenson, Tom; Soares, AnaHarvesting nutrients from waste presents a promising initiative to advance and deliver the circular economy in the water sector while mitigating local shortages of mineral fertilizers worldwide. Urine, a small fraction of municipal wastewater, holds substantial amounts of nitrogen, orthophosphate (PO4–P), and chemical oxygen demand (COD). Separating urine aids targeted nutrient recovery, emissions reduction, and releasing capacity in wastewater treatment plants and taps into overlooked vital nutrients like magnesium (Mg2+) and potassium (K+), essential for plant growth. The ability of selected microorganisms (Brevibacterium antiquum, Bacillus pumilus, Halobacterium salinarum, Idiomarina loihiensis, and Myxococcus xanthus) to remove and recover nutrients from fresh urine through bio-mineral formation of struvite was investigated. The selected microorganisms outcompeted native microbes in open-culture fresh urine, and intact cell counts were 1.3 to 2.3 times larger than in noninoculated controls. PO4–P removal reached 50% after 4 days of incubation and 96% when urine was supplemented with Mg2+. Additionally, soluble COD was reduced by 60%; urea hydrolysis was only < 3% in controls, but it reached 35% in inoculated urine after 10 days. The dominant morphology of recovered precipitates was euhedral and prismatic, identified using energy dispersive spectroscopy and X-ray diffraction as struvite (i.e., bio-struvite), but K+ was also present at 5%. Up to 1 g bio-struvite/L urine was recovered. These results demonstrate the ability of bio-mineral producing microorganisms to successfully grow in urine and recover nutrients such as bio-struvite, that could potentially be used as sustainable fertilizers or chemicals.Item Open Access Performance and stability of sewage sludge digestion under CO2 enrichment: a pilot study(Elsevier, 2017-08-16) Alibardi, Luca; Green, Kevin; Favaro, Lorenzo; Vale, Peter; Soares, Ana; Cartmell, Elise; Bajón Fernández, YadiraCarbon dioxide (CO2) injection in anaerobic digestion has recently been proposed as an interesting possibility to boost methane (CH4) recovery from sludge and organic waste by converting a greenhouse gas into a renewable resource. This research assessed the effects of exogenous CO2 injection on performance and process stability of single-phase continuous anaerobic digesters. Two pilot scale reactors treating sewage sludge were operated for 130 days. One reactor was periodically injected with CO2 while the other acted as control. Two injection frequencies and injection devices were tested. The results indicated that CO2 enrichment allowed an increase in CH4 production of ca. 12%, with a CH4 production rate of 371 ± 100 L/(kgVSfed⋅d) and a CH4 concentration of ca. 60% when dissolved CO2 levels inside the test reactor were increased up to 1.9-fold. Results also indicated an improvement in process resilience to temporary overloads and no impacts on stability parameters.Item Open Access Predicting the potential of sludge dewatering liquors to recover nutrients as struvite biominerals(Elsevier, 2020-06-27) Simoes, Francisco; Colston, Robert; Rosa-Fernandes, Catarina; Vale, Peter; Stephenson, Tom; Soares, AnaPhosphorus and nutrient recovery from wastewater as mineral salts can support local replenishment of fertilisers and reduce mining, contributing to the circular economy. Wastewater and related streams are rich in nutrients, however; there is need to develop bio-based processes to recover them. This study investigates the fractions of phosphorus (P) used by Brevibacterium antiquum to form struvite biominerals (bio-struvite) in wastewater sludge dewatering liquors. After 72h of incubation, 25.6 mg P/L were recovered as bio-struvite from 12.4 mg P/L organic plus condensed P and 13.2 mg P/L of ortho-phosphate. The potential of sludge dewatering liquors to recover nutrients as struvite was investigated by characterising ten types of sludge liquors (originating from primary, secondary sludge, feed to anaerobic digester and digestate, from 3 types of wastewater treatment plants) for their P fractions together with other parameters relevant for B. antiquum growth. Results indicated that liquors obtained from primary sludge, feed to anaerobic digesters and digestate were the most suitable to produce bio-struvite, as these were found to frequently have a high content of organic and condensed P, between to 276–732 mg P/L. Liquors, from all the investigated sites, presented a higher potential for bio-struvite production than with conventional struvite precipitation. This study demonstrated that B. antiquum could convert organic and condensed P into bio-struvite, and this opens up a completely new way to recover forms of phosphorus that are not typically available for nutrient recovery in a single processItem Open Access Reactive media constructed wetland for phosphorus removal: assessing the opportunity and challenges(IWA Publishing, 2024-03-09) Murujew, Olga; Le Corre, Kristell; Wilson, Andrea; Bajón Fernández, Yadira; Vale, Peter; Jefferson, Bruce; Pidou, MarcReactive media present an alternative to gravel in constructed wetlands and have the potential to sustainably and efficiently remove phosphorus from wastewater. In this study, a full-scale steel slag wetland has been operated for its whole lifecycle at which 1.39 mg P/g media were retained. During its lifecycle, this wetland met strict consents below 0.5 mg P/L for the first 6 months and was operated for 266 and 353 days before the effluent phosphorus concentration rose above the typical consents of 1 and 2 mg P/L, respectively. A detailed analysis of the system demonstrated that the performance was directly associated with the release of materials from the media into the water which in turn affected other critical parameters such as pH. Further analysis of the media suggested that greater understanding was needed concerning the role of carbonates and in particular calcite if steel slag is to be effectively managed for use on constructed wetlands. Importantly, controlled release of calcium oxide from the media surface is required by managing the concerns of pH and vanadium release.Item Open Access The role of pH on the biological struvite production in digested sludge dewatering liquors(Nature Publishing Group, 2018-05-08) Simoes, Francisco; Vale, Peter; Stephenson, Tom; Soares, AnaStruvite production mediated by bacteria has opened up a new route for phosphorus recovery from wastewater streams but its application to digested sludge dewatering liquors is not yet well understood. This study investigates the growth and biological struvite production of selected bacteria in wastewater liquors with pHs between 5.7 to 9.1. The bacterial growth was assessed through flow cytometry. Bacillus pumilus, Halobacterium salinarum and Brevibacterium antiquum remained viable at pHs between 5.7 to 9.1 but B. antiquum was able to grow at pHs between 7.3 to 7.8. Further analysis allowed the identification of crystals as struvite in tests between pH 7.3 to 8.3. All strains were capable of producing struvite at a range of pHs, but the highest production of 135–198 mg/L was observed for pHs between 7.3 to 8.3. At pHs > 8.3, precipitation of struvite and calcium compounds was observed in inoculated and non-inoculated tests. This study demonstrates that biological struvite production can occur at a wide range of pHs, hence significantly different from chemical struvite precipitation that occurs at pH > 8.3, making it a potentially viable process for phosphorus recovery as struvite from wastewater streams and sludge liquors without strict pH control.Item Open Access Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors(Taylor & Francis, 2017-12-21) Simoes, Francisco; Vale, Peter; Stephenson, Tom; Soares, AnaBiological struvite (bio-struvite) production through biomineralization has been suggested as an alternative to chemically derived struvite production to recover phosphorus from wastewater streams. In this study, statistical experimental design techniques were used to find the optimal growth rate (μ) of Brevibacterium antiquum in sludge liquors. Acetate, oleic acid, NaCl, NH4-N, and Ca2+ were shown to affect the growth rate of B. antiquum. The growth rate reached 3.44 1/d when the bacteria were supplemented with 3.0% w/v NaCl and 1124 mg chemical oxygen demand/L as acetate. However, NaCl was found to hinder the biomineralization of bio-struvite. A two-stage experiment demonstrated that bio-struvite was produced in the presence of acetate. Bio-struvite production was confirmed with X-ray spectroscopy and crystal morphology (prismatic, tabular, and twinned crystal habit) through electron microscope analysis. The bio-struvite production was estimated by measuring phosphate content of the recovered precipitates, reaching 9.6 mg P/L as bio-struvite. Overall, these results demonstrated the optimal conditions required to achieve high growth rates as well as bio-struvite production with B. antiquum. The results obtained in this study could be used to develop a process to grow B. antiquum in wastewater streams in mixed cultures and recover phosphorus-rich products such as struvite.