CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Usall, J."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Impact of climate change environmental conditions on the resilience of different formulations of the biocontrol agent Candida sake CPA‐1 on grapes
    (Wiley, 2018-03-30) Carbó, A.; Torres, R.; Teixidó, N.; Usall, J.; Medina-Vayá, Ángel; Magan, Naresh
    Biocontrol agents have become components of integrated crop protection systems for controlling economically important fungal pathogens. Candida sake CPA‐1 is a biocontrol agent of fungal pathogens of fruits, both pre‐ and post‐harvest. While the efficacy of different formulations have been examined previously, few studies have considered the resilience of different formulations under changing climatic conditions of elevated temperature, drought stress and increased atmospheric CO2. This study examined the effect of (a) temperature × RH × elevated CO2 (400 vs 1000 ppm) on the temporal establishment and viability of two dry and one liquid C. sake CPA‐1 formulations on grape berry surfaces; (b) temperature stress (25 vs 35°C); and (c) elevated CO2 levels. Results indicated that temperature, RH and CO2 concentration influenced the establishment and viability of the formulations but there was no significant difference between formulations. For the combined three‐component factors, increased temperature (35°C) and lower RH (40%) reduced the viable populations on grapes. The interaction with elevated CO2 improved the establishment of viable populations of the formulations tested. Viable populations greater than Log 4 CFUs per g were recovered from the grape surfaces suggesting that these had conserved resilience for control of Botrytis rot in grapes.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Predicted ecological niches and environmental resilience of different formulations of the biocontrol yeast Candida sake CPA-1 using the Bioscreen C
    (Springer, 2018-10-31) Carbó, A.; Torres, R.; Teixidó, N.; Usall, J.; Magan, Naresh; Medina-Vayá, Ángel
    Environmental resilience of biocontrol microorganisms has been a major bottleneck in the development of effective formulations. Candida sake is an effective biocontrol agent (BCA) against Penicillium expansum, Botrytis cinerea or Rhizopus stolonifer, and different formulations of the BCA have been optimised recently. The objective of this study was to compare the relative tolerance of different dry and liquid formulations of the biocontrol yeast C. sake CPA-1 to interacting environmental conditions using the Bioscreen C. Initially, the use of this automated turbidimetric method was optimised for use with different formulations of the biocontrol yeast. The best growth curves were obtained for the C. sake CPA-1 strain when grown in a synthetic grape juice medium under continuous shaking and with an initial concentration of 105 CFUs ml−1. All the formulations showed a direct relationship between optical density values and yeast concentrations. Temperature (15–30 °C) and water activity (aw; 0.94–0.99) influenced the yeast resilience most profoundly, whereas the effect of pH (3–7) was minimal. In general, the liquid formulation grew faster in more interacting environmental conditions but only the yeast cells in the dry potato starch formulation could grow in some stress conditions. This rapid screening method can be used for effective identification of the resilience of different biocontrol formulations under interacting ecological abiotic conditions.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback