CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Uriondo, Adrian"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A feasibility study on the implementation of visibility algorithms for fault diagnosis in aircraft fuel systems
    (Prognostics and Health Management Society, 2019-07-03) Esperon Miguez, Manuel; Uriondo, Adrian; Rodriguez, Jorge; Luque, Bartolo; Jennions, Ian K.
    This paper discusses the applicability of Visibility Algorithms to detect faults in condition monitoring applications. The general purpose of Visibility Algorithms is to transform time series into graphs and study them through the characterisation of their associated network. Degradation of a component results in changes to the network. This technique has been applied using a test rig of an aircraft fuel system to show that there is a correlation between the values of key metrics of visibility graphs and the severity of four failure modes. We compare the results of using Horizontal Visibility algorithms against Natural Visibility algorithms. The results also show how the Kullback-Leibler divergence and statistical entropy can be used to produce condition indicators. Experimental results show that there is little dispersion in the values of condition indicators, leading to a low probability of false positives and false negatives.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The present and future of additive manufacturing in the aerospace sector: a review of important aspects
    (SAGE, 2015-01-28) Uriondo, Adrian; Esperon Miguez, Manuel; Perinpanayagam, Suresh
    This paper reviews recent improvements in additive manufacturing technologies, focusing on those which have the potential to produce and repair metal parts for the aerospace industry. Electron beam melting, selective laser melting and other metal deposition processes, such as wire and arc additive manufacturing, are presently regarded as the best candidates to achieve this challenge. For this purpose, it is crucial that these technologies are well characterised and modelled to predict the resultant microstructure and mechanical properties of the part. This paper presents the state of the art in additive manufacturing and material modelling. While these processes present many advantages to the aerospace industry in comparison with traditional manufacturing processes, airworthiness and air transport safety must be guaranteed. The impact of this regulatory framework on the implementation of additive manufacturing for repair and production of parts for the aerospace industry is presented.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback