Browsing by Author "Upson, Matthew A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access The carbon storage benefits of agroforestry and farm woodlands(Cranfield University, 2014-07) Upson, Matthew A.; Burgess, Paul J.Planting trees on agricultural land either as farm woodlands or agroforestry (trees integrated with farming) is one option for reducing the level of atmospheric carbon dioxide. Trees store carbon as biomass, and may increase carbon storage in the ground. A review of the literature outlined uncertainty relating to changes in carbon storage after planting trees on agricultural land. The aim of this thesis is to deter¬mine the impact of tree planting on arable and pasture land in terms of above and belowground carbon storage and thereby address these uncertainties, and assess the implications for the Woodland Carbon Code: a voluntary standard for carbon storage in UK woodlands. Measurements of soil organic carbon to a depth of 1.5 m were taken at two field sites in Bedfordshire in the UK: a 19 year old silvoarable trial, and a 14 year old silvopasture and farm woodland. On average 60% and 40% of the soil carbon (rel¬ative to 1.5 m) was found beneath 0.2 and 0.4 m in depth respectively. Whilst tree planting in the arable system showed gains in soil organic carbon (12.4 t C ha−1 at 0–40 cm), tree planting in the pasture was associated with losses of soil organic carbon (6.1–13.4 t C ha−1 at 0–10 cm). Evidence from a nearby mature grazed woodland indicate that these losses may be recovered. No differences associated with tree planting were found to the full 1.5 m, though this may be due to a lack of statistical power. Measurements of above and belowground biomass, and the root distribution of 19 year old poplar (Populus spp.) trees (at the silvoarable trial) and ash (Fraxinus excelsior) trees ranging from 7 to 21 years (at several field sites across Bedfordshire) were made, involving the destructive harvest of 48 trees. These measurements suggest that Forestry Commission yield tables overestimate yield for poplar trees grown in a silvoarable system. An allometric relationship for determining ash tree biomass from diameter measurements was established. The biophysical model Yield-SAFE was updated to take into account root growth, and was parameterised using field measurements. It was successfully used to describe existing tree growth at two sites, and was then used to predict future biomass carbon storage at the silvoarable trial. Measurements indicate that losses in soil carbon at relatively shallow depths can offset a large proportion of the carbon stored in tree biomass, but assessing changes on a site by site basis may be prohibitively expensive for schemes such as the Woodland Carbon Code.Item Open Access Soil carbon changes after establishing woodland and agroforestry trees in a grazed pasture(Elsevier, 2016-07-30) Upson, Matthew A.; Burgess, Paul J.; Morison, J. I. L.This study determined the effect of two tree planting methods (woodland and a silvopastoral agroforestry system) on the soil bulk density and organic carbon content of a grassland site in lowland England. Soil organic carbon was measured in pasture, silvopastoral tree, and woodland treatments at six depths representative of 0–150 cm. Fourteen years after tree planting, the organic carbon content in the surface soil layer (0–10 cm) was greatest in the pasture (6.0 g 100 g− 1) and least in the woodland (4.6 g 100 g− 1); the value (5.3 g 100 g− 1) below the silvopastoral trees was intermediate. In the 10–20 cm layer, the organic carbon content in the woodland was 13% lower than the pasture. No treatment effects on soil carbon were detected below 20 cm. Possible reasons for the decline in surface soil carbon include a decline in grass cover and reduced soil water content. Measurements of above ground carbon storage by the trees indicated that tree planting increased overall carbon storage, with the silvopastoral system predicted to achieve a higher level of carbon storage than equivalent areas of separate woodland and pasture. A power analysis indicates that a prohibitively large number of replicates is needed to ensure a lower than 20% risk of falsely concluding no treatment differences at individual depth increments below 10 cm and cumulative depths extending below 40 cm.Item Open Access Soil organic carbon and root distribution in a temperate arable agroforestry system(Springer, 2013-06-01) Upson, Matthew A.; Burgess, Paul J.Aim To determine, for arable land in a temperate area, the effect of tree establishment and intercropping treatments, on the distribution of roots and soil organic carbon to a depth of 1.5 m. Methods A poplar (Populus sp.) silvoarable agroforestry experiment including arable controls was established on arable land in lowland England in 1992. The trees were intercropped with an arable rotation or bare fallow for the first 11 years, thereafter grass was allowed to establish. Coarse and fine root distributions (to depths of up to 1.5 m and up to 5 m from the trees) were measured in 1996, 2003, and 2011. The amount and type of soil carbon to 1.5 m depth was also measured in 2011. Results The trees, initially surrounded by arable crops rather than fallow, had a deeper coarse root distribution with less lateral expansion. In 2011, the combined length of tree and understorey vegetation roots was greater in the agroforestry treatments than the control, at depths below 0.9 m. Between 0 and 1.5 m depth, the fine root carbon in the agroforestry treatment (2.56 t ha-1) was 79% greater than that in the control (1.43 t ha-1). Although the soil organic carbon in the top 0.6 m under the trees (161 t C ha-1) was greater than in the control (142 t C ha-1), a tendency for smaller soil carbon levels beneath the trees at lower depths, meant that there was no overall tree effect when a 1.5 m soil depth was considered. From a limited sample, there was no tree effect on the proportion of recalcitrant soil organic carbon. Conclusions The observed decline in soil carbon beneath the trees at soil depths greater than 60 cm, if observed elsewhere, has important implication for assessments of the role of afforestation and agroforestry in sequestering carbon.