Browsing by Author "Tyrrel, Sean F."
Now showing 1 - 20 of 53
Results Per Page
Sort Options
Item Open Access Anaerobic digestion foaming causes – A review(Elsevier, 2009-12) Ganidi, Nafsika; Tyrrel, Sean F.; Cartmell, EliseAnaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water companies due to significant impacts on process efficiency and operational costs. Several foaming causes have been identified over the past few years by researchers. However, the supporting experimental information is limited and in some cases absent. The present report aims to provide a detailed review of the current anaerobic digestion foaming problem and to identify gaps in knowledge regarding the theory of foam formation in anaerobic digesters.Item Open Access An assessment of microbiological water quality of six water source categories in north-east Uganda(IWA Publishing, 2010-12-31) Parker, Alison; Youlten, R.; Dillon, M.; Nussbaumer, T.; Carter, Richard C.; Tyrrel, Sean F.; Webster, JamesTarget 7C of the Millennium Development Goals is to "halve, by 2015, the proportion of people without sustainable access to safe drinking water and basic sanitation". However, the corresponding indicator measures the "proportion of population using an improved drinking water source". This raises the question of whether "safe" and "improved" can be used interchangeably. This paper tests this hypothesis by comparing microbiological water quality in 346 different water sources across the District of Amuria in Uganda to each other and to defined standards, including the WHO drinking water standard of zero TTC per 100ml, and the Ugandan national standard of 50TTC per 100ml. The water sources were grouped into six different categories: boreholes, protected springs, covered hand dug wells, open hand dug wells, open water and roofwater harvesting. The paper concludes that the ranking from the highest to the lowest microbiological quality water was: boreholes, protected springs and roofwater harvesting, open and covered hand dug wells, open water. It also concludes that sanitary surveys cannot be used to predict water quality precisely; however they are an essential component of the monitoring of safe water supplies.Item Open Access Assessment of respiratory problems in workers associated with intensive poultry facilities in Pakistan(Elsevier, 2020-01-07) Yasmeen, Roheela; Ali, Zulfiqar; Tyrrel, Sean F.; Nasir, Zaheer A.Background The poultry industry in Pakistan has flourished since the 1960s; however, there are scarce data regarding the impact of occupational exposure on the pulmonary health of farm workers in terms of years working in the industry. The objective of the present study was to assess the effect of poultry environment on the health of occupationally exposed poultry farmers in countries of warm climatic regions, such as Pakistan. This study will also show the effect of exposure to poultry facilities on the health of poultry farmers in the context of low-income countries with a relatively inadequate occupational exposure risk management. Materials and methods The lung function capacity of 79 poultry workers was measured using a spirometer. Along with spirometry, a structured questionnaire was also administrated to obtain information about age, height, weight, smokers/nonsmokers, years of working experience, and pulmonary health of farm workers. The workers who were directly involved in the care and handling of birds in these intensive facilities were considered and divided into four groups based on their years of working experience: Group I (3-10 months), Group II (1-5 years), Group III (6-10 years), and Group IV (more than 11 years). The forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and the FEV1/FVC ratio were considered to identify lung function abnormalities. Statistical analysis was carried out using independent sample t test, Chi-square test, Pearson's correlation, and linear regression. Results Based on the performed spirometry, 68 (86 %) of workers were found normal and healthy, whereas 11 (14 %) had a mild obstruction. Of the 11 workers with mild obstruction, the highest number with respect to the total was in Group IV (more than 11 years of working experience) followed by Group III and Group II. Most of the workers were found healthy, which seems to be because of the healthy survivor effect. For the independent sample t test, a significant difference was noticed between healthy and nonhealthy farmers, whereas Chi-square test showed a significant association with height, drugs, and working experience. Linear regression that was stratified by respiratory symptoms showed for workers with symptoms, regression models for all spirometric parameters (FVC, FEV1, and FEV1/FVC) have better predictive power or R square value than those of workers without symptoms. Conclusion These findings suggest that lung function capacity was directly related to years of working experience. With increasing number of working years, symptoms of various respiratory problems enhanced in the poultry workers. It should be noted that most of the poultry workers were healthy and young, the rationale being that there is a high turnover rate in this profession. The mobility in this job and our finding of 86% of the healthy workers in the present study also proposed healthy worker survivor effectItem Open Access Assuring the microbiological quality of water used to irrigate salad crops: an assessment of the options available(2004-03-02T00:00:00Z) Tyrrel, Sean F.; Knox, Jerry W.; Burton, C. H.; Weatherhead, E. K.- Headline. Although no evidence to link the irrigation of salads to disease outbreaks in the UK has been found, the industry should be seen to be taking the issue of irrigation water quality seriously. The strategy should be to take proactive measures to pre-empt the adoption of unnecessarily cautious standards within grower protocols. - Background and expected deliverables. Concerns have been expressed by some of the major supermarkets that salad vegetables may become contaminated with pathogens as a result of crop irrigation using poor quality water sources. As salads are likely to be eaten raw and will have received a minimal level of processing there are fears that consumers may be put at risk if irrigation water quality is not controlled. To assure product quality and to protect consumer confidence, some supermarkets may set stringent irrigation water quality standards in future grower protocols. Product quality is of paramount importance to growers, processors, retailers and consumers alike. However, the salad growing industry advocates a proportionate, science-based approach to the development of grower protocols rather than the adoption of an excessively precautionary principle. The aim of this project was to generate the baseline information needed by the industry to respond in a positive way to the concerns of retailers. The findings should help to inform the decisions and actions necessary to demonstrate and assure the quality of these products. The work should also support and contribute to the broader commercial objectives of the HDC regarding the efficient use of water. - Summary of the project and main conclusions. The following research tasks were undertaken in pursuit of the project’s aim. 1 A review of literature relating to the microbiological quality of irrigation water and of salad crops. 2 A survey of current UK irrigated salad production to assess current usage and underlying trends. 3 An evaluation of the technological and economic feasibility of on-farm water treatment options. 4 An analysis and discussion of the data collected and development of recommendations for the industry. The main conclusions of this work are: Irrigation water is one of many potential sources of contamination of salads. No published direct evidence has been found to link the irrigation of salads to disease outbreaks in the UK. However, there is a clear potential for this to occur. Published laboratory trials have shown that pathogens associated with poor quality irrigation water may survive on lettuce until harvest. Epidemiological investigations (not from UK) have indicated a link between disease and poor quality irrigation water. On occasions, some UK salad crops are probably irrigated with water of a lower microbiological standard than that recommended for comparable uses (e.g. reuse of wastewater for irrigation and bathing). The actual extent to which this occurs should be quantified and reviewed. The lack of guidance on irrigation water quality is a deterrent to proper water quality monitoring as most growers are unsure how they should respond to the data that is generated. This situation should be corrected as a matter of priority. It is reported that some of the multiple retailers in the UK favour a standard for irrigation water close to that which would meet the requirements for drinking water (i.e. absence or infrequent presence of E. coli in 100 ml water). Our review of standards suggests that this may be an unnecessarily cautious and expensive option. A grower faced with doubts about water quality appears to have four options: Demonstrate existing water is of adequate quality; Treat existing water; Change water source; Relocate crop. A site specific water resources study should be undertaken before assuming that treatment is necessary. Where water quality cannot be assured by management or sourcing strategies, treatment technologies may be considered. Of the many options, three technologies are likely to be suitable: ultra-violet (U/V) treatment, thermal treatment, and sand filters. U/V is considered to be attractive when taking all of the factors into account. Thermal treatment is the most rigorous and reliable. With heat recovery, such treatment could be viable in some cases. Sand filters offer the most farmer-friendly solution but these systems offer less assurance of water quality. - Financial benefits. There are no direct financial benefits to be gained by growers from this work. It may be prudent for growers to take proactive measures to improve monitoring procedures to pre-empt the adoption of unnecessarily cautious (and costly) standards in future grower protocols. - Action points for growers. There is likely to be increasing scrutiny of the microbiological quality of irrigation water. It is advised that growers review their monitoring strategy as a matter of priority. Regular sampling of water sources, at least monthly during the irrigation season, for faecal indicator bacteria would be a good start. The development of such a dataset would aid future decisions regarding the acceptability of particular sources.Item Open Access Bioaerosol emissions from open windrow composting facilities : emission characterisation and dispersion modelling improvements(Cranfield University, 2013-06) Douglas, Philippa; Drew, Gillian H.; Tyrrel, Sean F.Bioaerosol emissions from open windrow composting facilities are becoming of increasing concern due to the negative health effects associated with bioaerosols, and the fact that emissions from open windrow facilities are not contained. Current bioaerosol monitoring techniques provide only a snapshot of bioaerosol concentrations spatially and temporally, whereas dispersion models have the potential to offer a more continual overview of bioaerosol levels, alongside existing sampling methods. However, dispersion models have not been successful at accurately predicting bioaerosol concentrations from open windrow composting facilities, generally under predicting concentrations by at least one order of magnitude. This is predominantly due to a lack of knowledge and data surrounding the complex nature of bioaerosol release and transportation, particularly when the compost is agitated. This study aimed to improve the reliability in the outputs of the ADMS dispersion model, specifically in the open windrow composting scenario, by performing several model tests alongside selected input parameter quantification improvements. This involved completing a sensitivity analysis, and a model calibration and validation specific to this scenario for the first time. Results from the sensitivity analysis showed that the use of wet and dry deposition modules is significant, and the majority of model inputs associated with the representation of the source of the emission are sensitive. These findings helped select the model input parameters for quantification improvements. Novel preliminary measurements of bioaerosol temperature, velocity and concentration at the source of composting agitation activities were completed. These values provided more accurate model inputs. Collectively, these results allowed the model to be successfully calibrated, and consequently, validated for the first time for this specific scenario, resulting in model outputs corresponding to within one order of magnitude to measured data. This has helped to generate an initial set of modelling recommendations, allowing modellers to use the ADMS dispersion model in a reliable manner, when applied to the open windrow composting scenario. Eventually, these improved model outputs may be used to predict bioaerosol exposure levels at sensitive receptors, particularly in conditions where current monitoring methods are not feasible.Item Open Access Bioremediation of leachate from a green waste composting facility using waste-derived filter media(Elsevier, 2008-11) Tyrrel, Sean F.; Seymour, I.; Harris, Jim A.The evaluation of two waste-derived materials used to treat compost leachate by biofiltration is described in this paper. Nine biofilters were constructed using 240 l, high density polyethylene containers. Three containers were filled without compaction with 200 l of each of three types of filter media. Waste-derived filter media (compost and oversize) were compared to a mineral control (granite chips). The filters were fed with compost leachate from a typical green waste composting facility at hydraulic loading rates ranging from 0.05 m3/m3/day to 0.5 m3/m3/day over a period of twelve months. The oversize medium emerged as the most effective demonstrating characteristics of consistency of effluent quality and resilience to stress. The oversize medium produced an effluent of <10 mg/l ammoniacal nitrogen on >95% of sampling occasions. The organic component of compost leachate was dominated by compounds that proved to be recalcitrant to biodegradation. The solids content of the treated effluent remained too high to be acceptable for direct discharge to a watercourse without further treatment and if discharge to a watercourse is to be considered, a polishing stage (e.g., reed bed) able to remove solids and dampen occasional peaks of ammoniacal nitrogen should be employed.Item Open Access The challenges, uncertainties and opportunities of bioaerosol dispersion modelling from open composting facilities(WIT Press, 2017-08-06) Williams, Ben; Hayes, Enda T.; Nasir, Zaheer A.; Rolph, Catherine A.; Jackson, Simon; Khera, Shagun; Bennett, Alan; Gladding, Toni Lesley; Drew, Gillian H.; Tyrrel, Sean F.Bioaerosols are ubiquitous organic particles that comprise viruses, bacteria and coarser fractions of organic matter. Known to adversely affect human health, the impact of bioaerosols on a population often manifests as outbreaks of illnesses such as Legionnaires Disease and Q fever, although the concentrations and environmental conditions in which these impacts occur are not well understood. Bioaerosol concentrations vary from source to source, but specific human activities such as water treatment, intensive agriculture and composting facilitate the generation of bioaerosol concentrations many times higher than natural background levels. Bioaerosols are not considered ‘traditional’ pollutants in the same way as PM10, PM2.5, and gases such as NO2, and consequently dispersion models do not include a bespoke method for their assessment. As identified in previous studies, priority areas for improving the robustness of these dispersion models include: 1) the development of bespoke monitoring studies designed to generate accurate modelling input data; 2) the publication of a robust emissions inventory; 3) a code of practice to provide guidelines for consistent bioaerosol modelling practices; and 4) a greater understanding of background bioaerosol emissions. The aim of this research project, funded by the Natural Environmental Research Council (NERC), is to address these key areas through a better understanding of the generation, concentration and potential dispersion of bioaerosols from intensive agricultural and biowaste facilities, using case studies developed at specific locations within the UK. The objective is to further refine existing bioaerosol monitoring and modelling guidelines to provide a more robust framework for regulating authorities and site operators. This contribution outlines the gaps that hinder robust dispersion modelling, and describes the on-site bioaerosol data collection methods used in the study, explaining how they might be used to close these gaps. Examples of bioaerosol dispersion modelled using ADMS 5 are presented and discussed.Item Open Access Characterisation and control of the biosolids storage environment: Implications for E. coli dynamics(Elsevier, 2020-08-15) Fane, Sarah Elizabeth; Nocker, Andreas; Vale, Peter C. J.; Rivas Casado, Monica; Cartmell, Elise; Harris, Jim A.; Bajón Fernández, Yadira; Tyrrel, Sean F.E. coli survival in biosolids storage may present a risk of non-compliance with guidelines designed to ensure a quality product safe for agricultural use. The storage environment may affect E. coli survival but presently, storage characteristics are not well profiled. Typically biosolids storage environments are not actively controlled or monitored to support increased product quality or improved microbial compliance. This two-phased study aimed to identify the environmental factors that control bacterial concentrations through a long term, controlled monitoring study (phase 1) and a field-scale demonstration trial modifying precursors to bacterial growth (phase 2). Digested and dewatered biosolids were stored in operational-scale stockpiles to elucidate factors controlling E. coli dynamics. E. coli concentrations, stockpile dry solids, temperature, redox and ambient weather data were monitored. Results from ANCOVA analysis showed statistically significant (p < 0.05) E. coli reductions across storage periods with greater die-off in summer months. Stockpile temperature had a statistically significant effect on E. coli survival. A 4.5 Log reduction was measured in summer (maximum temperature 31 °C). In the phase 2 modification trials, covered stockpiles were able to maintain a temperature >25 °C for a 28 day period and achieved a 3.7 Log E. coli reduction. In winter months E. coli suppression was limited with concentrations >6 Log10 CFU g−1 DS maintained. The ANCOVA analysis has identified the significant role that physical environmental factors, such as stockpile temperature, has on E. coli dynamics and the opportunities for controlItem Open Access Characterisation and disersal of bioaerosols emitted from composting facilities(Cranfield University, 2009-07) Tamer Vestlund, Asli; Tyrrel, Sean F.; Drew, Gillian H.The role of sustainable and natural waste management processes such as composting are increasingly becoming more important in tackling the current environmental challenge of the amount of waste that is being produced. However a potential risk of composting facilities is the release and dispersal of bioaerosols that might result in adverse health effects in sensitive receptors. Therefore, environmental regulators request regulatory risk assessments from composting facilities that are within 250m of sensitive receptors to assess the risk posed by bioaerosols. The prior art in compost related bioaerosol release and dispersal assessment is not extensive and gaps in the understanding of bioaerosols at source, on release from composting facilities and at receptor remain. Therefore, this research was undertaken to address some of these gaps in the current knowledge and to improve the understanding of the characterisation and dispersal of bioaerosols emitted from compost. Therefore firstly two studies were completed in regards to the characterisation of bioaerosols emitted from compost, in particular in improving the understanding of their aggregation and size distribution. In this context, a novel methodology (the compost tumbler) was developed to release and measure bioaerosols in experimental conditions. Data was generated using a combination of culturing and scanning electron microscopy methods to characterise the aggregation and size distribution of bioaerosols emitted from compost. Secondly, site work was conducted to validate the results of these controlled experiments and characterise the aggregation and size distribution of bioaerosols emitted from composting facilities. These controlled experiments and site work showed evidence of aggregation in bioaerosols released from compost. However, the majority of these bioaerosols were in single cell units hence they are more likely to be dispersed for longer distances. Following this, other studies were conducted in regards to the dispersal of bioaerosols emitted from compost, in particular in improving the understanding of bioaerosol concentration prediction by air dispersion modelling. Firstly preliminary air dispersion modelling was completed to assess the ability of a commercial air dispersion model,ADMS 3.3, to predict bioaerosol emissions from composting facilities compared to bioaerosol concentrations measured by on-site downwind bioaerosol sampling. Folowing this, the sensitivities of ADMS 3.3 were analysed and the effect of different modelling parameters on predicted bioaerosol concentrations were assessed. Finally, a final assessment of the potential of ADMS 3.3 to predict bioaerosol emissions from composting facilities was conducted. The overall results from the modelling studies indicated that ADMS 3.3 was not able to consistently predict absolute downwind bioaerosol concentrations at composting facilities. However it was also concluded that ADMS 3.3 can be a useful tool for the initial screening and assessing relative changes of bioaerosols at a compost facility, provided that the detailed assessment of absolute bioaerosol emissions are made in conjunction with measurement of downwind bioaerosol concentrations. The research presented in this thesis makes a significant contribution to knowledge in terms of improving the understanding of the characterisation and dispersal of bioaerosols emitted from composting facilities.Item Open Access Comparison of a novel enzymatic biodegradability test method with microbial degradation methods(2008-01-01T00:00:00Z) Wagland, Stuart Thomas; Godley, Andrew R.; Frederickson, Jim; Tyrrel, Sean F.; Smith, RichardA novel enzymatic hydrolysis test (EHT) has been evaluated as a surrogate for conventional microbial biodegradability methods, using 37 assorted organic waste samples collected from diverse sources. The results of the EHT method are compared with those obtained from two conventional tests; the 4 day aerobic DR4 and 100 day anaerobic BM100 test methods currently applied in England and Wales. The EHT is based on the enzymatic hydrolysis of cellulosic materials and can be completed in less than 24 hours. Linear regression for 37 samples against the BM100 data showed the DR4 provided a correlation coefficient of r = 0.58; the EHT method gave a correlation of r = 0.62 for the total DOC release; and r = 0.77 for the DOC released from enzymatic hydrolysis. The correlations suggest that the EHT method may be better suited to a wider range of waste types when correlating with anaerobic BM100 test results since it more closely mimics the full extent of decomposition rather than that from the readily biodegradable fraction.Item Open Access Compost liquor bioremediation using waste materials as biofiltration media.(Elsevier, 2005-03) Savage, A. J.; Tyrrel, Sean F.Compost liquor results from the percolation of precipitation through composting waste; the release of liquids from high moisture content feedstocks; and as a result of runoff from hard surfaces and machinery. This research aimed to establish the potential for waste materials to act as media for low-cost compost liquor biofilters. Six types of potential biofilter media were packed into experimental biofilters (1 m long x 0.11 m diameter) and irrigated with compost liquor (organic loading rate of 0.6 kg/m3/d) for three months. The pH, BOD5, NH3/NH4+, and phytotoxicity of the effluent was monitored regularly. Natural, organic materials (oversize, compost and wood mulch) performed best, when compared to synthetic materials such as polystyrene packaging or inert materials such as broken brick. On average, the best media achieved 78% removal of both BOD5 and ammoniacal nitrogen during the study period. Although significant improvements in liquor quality were achieved, the effluent remained heavily polluted.Item Open Access Concentration and composition of bioaerosol emissions from intensive farms: pig and poultry livestock(Elsevier, 2020-07-14) Gladding, Toni Lesley; Rolph, Catherine A.; Gwyther, Ceri L.; Kinnersley, Robert P.; Walsh, Kerry A.; Tyrrel, Sean F.Intensive farming is widespread throughout the UK and yet the health effects of bioaerosols which may be generated by these sites are currently not well researched. A scoping study was established to measure bioaerosols emitted from intensive pig (n = 3) and poultry farms (n = 3) during the period 2014–2015. The concentration of culturable mesophilic bacteria, Gram-negative bacteria, Staphylococcus spp., and fungi selecting for presumptive Aspergillus fumigatus were measured using single-stage impaction Andersen samplers, whilst endotoxin and (1 → 3)-β-D-glucan was undertaken using inhalable personal samplers. Particulate matter concentration was determined using an optical particulate monitor. Results showed that culturable bacteria, fungi, presumptive Staphylococcus aureus (confirmed only as Staphylococcus spp.) and endotoxin concentrations were elevated above background concentrations for distances of up to 250 m downwind of the source. Of all the culturable bioaerosols measured, bacteria and Staphylococcus spp. were identified as the most significant, exceeding published or proposed bioaerosol guidelines in the UK. In particular, culturable Staphylococcus spp. downwind was at least 61 times higher than background at the boundary and at least 8 times higher 70m downwind on the four farms tested. This research represents a novel dataset of intensive farm emissions within the UK. Future research should exploit the use of innovative culture-independent methods such as next generation sequencing to develop deeper insights into the make-up of microbial communities emitted from intensive farming facilities and which would better inform species of interest from a public health perspectiveItem Open Access Development and application of an Enzymatic Hydrolysis test to assess the biodegradability of organic waste material(2007-10-01T00:00:00Z) Wagland, Stuart Thomas; Smith, Richard; Godley, Andrew R.; Tyrrel, Sean F.; Blakey, N.A novel and rapid biodegradability test method has been developed based on the enzymatic hydrolysis of cellulose. The test method consists of three phases, in which the first two phases consist of the pH buffer addition, and then autoclaving of the mixture and the final phase is the addition of the enzyme mixture and incubation. An initial investigation was carried out to determine the optimum conditions for the enzymes using standard commercial cellulose as the substrate. The optimised test was then applied to a wide range of organic waste samples including untreated and treated MSW derived mixed BMW, and specific wastes such as waste wood, packaging waste (cardboard), turkey feathers and green waste. The DOC released by enzymatic hydrolysis indicates that this could give an indication of the sample biodegradability. However the DOC released in phases 1 and 2 may also contain some biodegradable components (depending on the extent of biological treatment applied to the waste sample) and these would need to be differentiated from the non-biodegradable DOC and used together with the DOC from phase 3 to give the best possible biodegradability indication.Item Open Access The Effect of Green Waste Composting on the Concentration and Composition of Ambient Bioaerosols(Cranfield University, 2010-01) Pankhurst, Louise J.; Tyrrel, Sean F.; Drew, Gillian H.The emission and dispersal of bioaerosols from commercial composting facilities has become an issue of increasing concern over the past decade, as historical evidence links bioaerosol exposure to negative human health impacts. As a result, recommended concentrations and risk assessment limits were imposed in 2001. However, more recent research has suggested that these limits may be exceeded under certain circumstances. For example, underestimation of bioaerosol concentrations may occur through „snapshot‟ sampling, and the use of methods that may reduce culturability of bioaerosols. This study aimed to address several gaps in knowledge, including quantification of bioaerosol concentrations downwind from sites, analysis of the effect that operational and environmental influences have on emission and downwind concentrations, and investigation of methods for the enumeration of non-culturable bioaerosols. The concentrations of bioaerosols upwind, on-site and downwind from two open-air green waste windrow composting facilities were enumerated in extensive detail, producing the first detailed and validated database of bioaerosol concentrations at green-waste composting facilities. The effects of composting processing activities, season, and meteorological conditions on concentrations were also investigated utilising this dataset. Results from these studies suggested that bioaerosols are able to disperse in elevated concentrations to distances beyond the 250 m risk assessment limit. Downwind peaks in concentration were directly linked to compost processing activities on-site, with the risk of sensitive receptor exposure to bioaerosols during non-operational hours minimal. Further, it was found that patterns in downwind concentrations of bioaerosols are likely to be governed by buoyancy effects, as a second peak in concentrations was found at 100-150m downwind. This finding was further supported through the use of a novel direct counting method. Finally, molecular methods allowed the composition of bioaerosols emitted from composting to be determined and showed that composting significantly alters the aerobiotic community at distances downwind. The methods investigated provide the potential for detailed, continuous measurements of bioaerosols, alongside identification of potentially pathogenic microorganisms, and could ultimately lead to source apportionment of bioaerosols.Item Open Access The effect of incorporating slurries on the transport of faecal coliforms in overland flow.(Blackwell Publishing Ltd., 2003) Quinton, John Norman; Tyrrel, Sean F.; Ramos, María C.Rainfall simulation experiments on a laboratory soil flume were conducted to test the hypothesis that the incorporation of slurry into the soil would reduce bacterial transport in overland flow. Presumptive faecal coliform (PFCs) concentrations were higher in the runoff from the surface applied treatment than from the incorporated treatments. The transport of PFCs and organic sediment were strongly correlated, with values of r ranging from 0.72 to 0.91.Item Open Access The effect of organic loading rate on foam initiation during mesophilic anaerobic digestion of municipal wastewater sludge(Elsevier Science B.V., Amsterdam., 2011-06-30T00:00:00Z) Ganidi, Nafsika; Tyrrel, Sean F.; Cartmell, EliseThe impact of increasing organic load on anaerobic digestion foaming was studied at both full and bench scale. Organic loadings of 1.25, 2.5 and 5 kg VS m(-3) were applied to bench-scale digesters. Foaming was monitored at a full scale digester operated in a comparable organic loading range over 15 months. The bench scale batch studies identified 2.5 kg VS m(-3) as a critical threshold for foam initiation while 5 kg VS m(-3) resulted in persistent foaming. Investigation of a full scale foaming event corroborated the laboratory observation that foaming may be initiated at a loading rate of 2.5 kg VS m(-3). Experimental findings on foam composition and differences in the quality characteristics between foaming and non-foaming sludges indicated that foam initiation derived from the combined effect of the liquid and gas phases inside a digester and that the solids/biomass ultimately stabilized foaming. (C) 2011 Elsevier Ltd. All rights reserved.Item Open Access Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms.(Elsevier, 2006-01) Ramos, María C.; Quinton, John Norman; Tyrrel, Sean F.The large quantities of slurry and manure that are produced annually in many areas in which cattle are raised could be an important source of organic matter and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are analysed. Rainfall simulations at a rate of 70 mm h−1 were conducted in a sandy loam soil packed into soil flumes (2.5 m long×1 m wide) at a bulk density of 1400 kg m−3, with and without cattle slurry manure applied on the surface. For each simulation, sediment and runoff rates were analysed and in those simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils, reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies an important source of pollution for surface waters especially if rainfall takes place within a short period after application. The concentrations of micro-organisms (presumptive faecal coliforms (PFCs)) found in water runoff ranged from 1.9×104 to 1.1×106 PFC 100 mL−1, depending on the initial concentration in the slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a strong relationship between the faecal coliforms transported by runoff and the organic matter in the sediment.Item Open Access Endotoxin emissions from commercial composting activities(BioMed Central, 2009-12-21T00:00:00Z) Deacon, Lewis J.; Pankhurst, Louise J.; Liu, Jian; Drew, Gillian H.; Hayes, Enda T.; Jackson, Simon; Longhurst, James; Longhurst, Philip J.; Pollard, Simon J. T.; Tyrrel, Sean F.This paper describes an exploratory study of endotoxin emissions and dispersal from a commercial composting facility. Replicated samples of air were taken by filtration at different locations around the facility on 10 occasions. Measurements were made of endotoxin and associated culturable microorganisms. The inflammatory response of cell cultures exposed to extracts from the filters was measured. Endotoxin was detected in elevated concentrations close to composting activities. A secondary peak, of lesser magnitude than the peak at source was detected at 100-150 m downwind of the site boundary. Unexpectedly high concentrations of endotoxin were measured at the most distant downwind sampling point. Extracted endotoxin was found to stimulate human monocytes and a human lung epithelial cell line to produce significant amounts of pro- inflammatory cytokines. On a weight basis, endotoxin extracted from the composting source has a greater inflammatory cytokine inducing effect than commercial E. coli endotoxin.Item Open Access Engineering difference: Matrix design determines community composition in wastewater treatment systems(Elsevier Science B.V., Amsterdam., 2012-03-01T00:00:00Z) Harris, Jim A.; Baptista, J. D. C.; Curtis, T. P.; Nelson, A. K.; Pawlett, Mark; Ritz, K.; Tyrrel, Sean F.There is a growing view that the application of ecological theory has the potential to facilitate a transition from a descriptive to a predictive framework in wastewater engineering. In this study we tested the hypotheses that: (i) it is possible to engineer consistent differences between microbial communities in wastewater treatment modules; (ii) there is a positive relationship between structural complexity and genetic diversity; (iii) such interactions are modulated by the availability of energy. We developed four treatment modules of increasingly complex support material (matrix) design, and pumped a synthetic wastewater through them for 16 weeks. We then disassembled the modules and assessed the phylogenetic (general eubacteria and ammonium diversity of the communities present on the support materials. We found that different genotypic and phenotypic community structures were reliably generated by the engineering of their physical environment in terms of structural complexity (as determined by particle size distribution and therefore pore size distribution). Furthermore, there was a notably consistent response of the phenotypic structure to such circumstances, and also to the presence of organic matter. However, we found no significant relationships between genetic diversity and structural complexity either for eubacterial or ammonia-oxidiser microbial groups. This work demonstrates that is it possible to engineer modules of differing microbial community composition by varying their physical complexity. This is an essential first step in testing relationships between system diversity and treatment resilience at a process level.oxidisers, by DGGE profiling) and phenotypic (by PLFA profiling)Item Open Access Estimation of particulate matter and gaseous concentrations using low-cost sensors from broiler houses(Springer Verlag, 2019-06-27) Yasmeen, Roheela; Nasir, Zaheer A.; Tyrrel, Sean F.Particulate and gaseous emissions from intensive poultry facilities are major public and environmental health concern. The present study was aimed at exploratively monitoring particulate matter (PM) and gaseous concentrations in controlled-environment facilities using low-cost sensors in Lahore, Pakistan. The indoors and outdoors of 18 broiler houses, grouped into three categories based on the age of birds: group I (1–20 days), group II (21–30 days) and group III (31–40 days), were examined. Low-cost sensors Dylos 1700 and Aeroqual 500 series with different gas sensor heads were used to monitor PM and different gases such as nitrogen dioxide (NO2), hydrogen sulphide (H2S), carbon dioxide (CO2) and methane (CH4), respectively. Overall, the mean PM and gaseous concentrations increased with the age and activity of birds as compared with the non-activity time of birds. Statistically significant differences were observed in all measured parameters among the groups. The negative correlation between indoor and outdoor environments for PM and gas concentrations at some broiler houses demonstrates the contribution of additional sources to emissions in outdoor environments. The findings contribute to our knowledge of temporal characteristics of particulate and gaseous concentrations from poultry facilities particularly in Pakistan and generally to the capability of using low-cost sensors to evaluate emissions from such facilities.
- «
- 1 (current)
- 2
- 3
- »