Browsing by Author "Tyrrel, Sean F."
Now showing 1 - 20 of 45
Results Per Page
Sort Options
Item Open Access Anaerobic digestion foaming causes – A review(Elsevier, 2009-12) Ganidi, Nafsika; Tyrrel, Sean F.; Cartmell, EliseAnaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water companies due to significant impacts on process efficiency and operational costs. Several foaming causes have been identified over the past few years by researchers. However, the supporting experimental information is limited and in some cases absent. The present report aims to provide a detailed review of the current anaerobic digestion foaming problem and to identify gaps in knowledge regarding the theory of foam formation in anaerobic digesters.Item Open Access An assessment of microbiological water quality of six water source categories in north-east Uganda(Iwa Publishing, 2010-12-31T00:00:00Z) Parker, Alison; Youlten, R.; Dillon, M.; Nussbaumer, T.; Carter, Richard C.; Tyrrel, Sean F.; Webster, JamesTarget 7C of the Millennium Development Goals is to "halve, by 2015, the proportion of people without sustainable access to safe drinking water and basic sanitation". However, the corresponding indicator measures the "proportion of population using an improved drinking water source". This raises the question of whether "safe" and "improved" can be used interchangeably. This paper tests this hypothesis by comparing microbiological water quality in 346 different water sources across the District of Amuria in Uganda to each other and to defined standards, including the WHO drinking water standard of zero TTC per 100ml, and the Ugandan national standard of 50TTC per 100ml. The water sources were grouped into six different categories: boreholes, protected springs, covered hand dug wells, open hand dug wells, open water and roofwater harvesting. The paper concludes that the ranking from the highest to the lowest microbiological quality water was: boreholes, protected springs and roofwater harvesting, open and covered hand dug wells, open water. It also concludes that sanitary surveys cannot be used to predict water quality precisely; however they are an essential component of the monitoring of safe water supplies.Item Open Access Assessment of respiratory problems in workers associated with intensive poultry facilities in Pakistan(Elsevier, 2020-01-07) Yasmeen, Roheela; Ali, Zulfiqar; Tyrrel, Sean F.; Nasir, Zaheer A.Background The poultry industry in Pakistan has flourished since the 1960s; however, there are scarce data regarding the impact of occupational exposure on the pulmonary health of farm workers in terms of years working in the industry. The objective of the present study was to assess the effect of poultry environment on the health of occupationally exposed poultry farmers in countries of warm climatic regions, such as Pakistan. This study will also show the effect of exposure to poultry facilities on the health of poultry farmers in the context of low-income countries with a relatively inadequate occupational exposure risk management. Materials and methods The lung function capacity of 79 poultry workers was measured using a spirometer. Along with spirometry, a structured questionnaire was also administrated to obtain information about age, height, weight, smokers/nonsmokers, years of working experience, and pulmonary health of farm workers. The workers who were directly involved in the care and handling of birds in these intensive facilities were considered and divided into four groups based on their years of working experience: Group I (3-10 months), Group II (1-5 years), Group III (6-10 years), and Group IV (more than 11 years). The forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and the FEV1/FVC ratio were considered to identify lung function abnormalities. Statistical analysis was carried out using independent sample t test, Chi-square test, Pearson's correlation, and linear regression. Results Based on the performed spirometry, 68 (86 %) of workers were found normal and healthy, whereas 11 (14 %) had a mild obstruction. Of the 11 workers with mild obstruction, the highest number with respect to the total was in Group IV (more than 11 years of working experience) followed by Group III and Group II. Most of the workers were found healthy, which seems to be because of the healthy survivor effect. For the independent sample t test, a significant difference was noticed between healthy and nonhealthy farmers, whereas Chi-square test showed a significant association with height, drugs, and working experience. Linear regression that was stratified by respiratory symptoms showed for workers with symptoms, regression models for all spirometric parameters (FVC, FEV1, and FEV1/FVC) have better predictive power or R square value than those of workers without symptoms. Conclusion These findings suggest that lung function capacity was directly related to years of working experience. With increasing number of working years, symptoms of various respiratory problems enhanced in the poultry workers. It should be noted that most of the poultry workers were healthy and young, the rationale being that there is a high turnover rate in this profession. The mobility in this job and our finding of 86% of the healthy workers in the present study also proposed healthy worker survivor effectItem Open Access Assuring the microbiological quality of water used to irrigate salad crops: an assessment of the options available(2004-03-02T00:00:00Z) Tyrrel, Sean F.; Knox, Jerry W.; Burton, C. H.; Weatherhead, E. K.- Headline. Although no evidence to link the irrigation of salads to disease outbreaks in the UK has been found, the industry should be seen to be taking the issue of irrigation water quality seriously. The strategy should be to take proactive measures to pre-empt the adoption of unnecessarily cautious standards within grower protocols. - Background and expected deliverables. Concerns have been expressed by some of the major supermarkets that salad vegetables may become contaminated with pathogens as a result of crop irrigation using poor quality water sources. As salads are likely to be eaten raw and will have received a minimal level of processing there are fears that consumers may be put at risk if irrigation water quality is not controlled. To assure product quality and to protect consumer confidence, some supermarkets may set stringent irrigation water quality standards in future grower protocols. Product quality is of paramount importance to growers, processors, retailers and consumers alike. However, the salad growing industry advocates a proportionate, science-based approach to the development of grower protocols rather than the adoption of an excessively precautionary principle. The aim of this project was to generate the baseline information needed by the industry to respond in a positive way to the concerns of retailers. The findings should help to inform the decisions and actions necessary to demonstrate and assure the quality of these products. The work should also support and contribute to the broader commercial objectives of the HDC regarding the efficient use of water. - Summary of the project and main conclusions. The following research tasks were undertaken in pursuit of the project’s aim. 1 A review of literature relating to the microbiological quality of irrigation water and of salad crops. 2 A survey of current UK irrigated salad production to assess current usage and underlying trends. 3 An evaluation of the technological and economic feasibility of on-farm water treatment options. 4 An analysis and discussion of the data collected and development of recommendations for the industry. The main conclusions of this work are: Irrigation water is one of many potential sources of contamination of salads. No published direct evidence has been found to link the irrigation of salads to disease outbreaks in the UK. However, there is a clear potential for this to occur. Published laboratory trials have shown that pathogens associated with poor quality irrigation water may survive on lettuce until harvest. Epidemiological investigations (not from UK) have indicated a link between disease and poor quality irrigation water. On occasions, some UK salad crops are probably irrigated with water of a lower microbiological standard than that recommended for comparable uses (e.g. reuse of wastewater for irrigation and bathing). The actual extent to which this occurs should be quantified and reviewed. The lack of guidance on irrigation water quality is a deterrent to proper water quality monitoring as most growers are unsure how they should respond to the data that is generated. This situation should be corrected as a matter of priority. It is reported that some of the multiple retailers in the UK favour a standard for irrigation water close to that which would meet the requirements for drinking water (i.e. absence or infrequent presence of E. coli in 100 ml water). Our review of standards suggests that this may be an unnecessarily cautious and expensive option. A grower faced with doubts about water quality appears to have four options: Demonstrate existing water is of adequate quality; Treat existing water; Change water source; Relocate crop. A site specific water resources study should be undertaken before assuming that treatment is necessary. Where water quality cannot be assured by management or sourcing strategies, treatment technologies may be considered. Of the many options, three technologies are likely to be suitable: ultra-violet (U/V) treatment, thermal treatment, and sand filters. U/V is considered to be attractive when taking all of the factors into account. Thermal treatment is the most rigorous and reliable. With heat recovery, such treatment could be viable in some cases. Sand filters offer the most farmer-friendly solution but these systems offer less assurance of water quality. - Financial benefits. There are no direct financial benefits to be gained by growers from this work. It may be prudent for growers to take proactive measures to improve monitoring procedures to pre-empt the adoption of unnecessarily cautious (and costly) standards in future grower protocols. - Action points for growers. There is likely to be increasing scrutiny of the microbiological quality of irrigation water. It is advised that growers review their monitoring strategy as a matter of priority. Regular sampling of water sources, at least monthly during the irrigation season, for faecal indicator bacteria would be a good start. The development of such a dataset would aid future decisions regarding the acceptability of particular sources.Item Open Access Bioremediation of leachate from a green waste composting facility using waste-derived filter media(Elsevier, 2008-11) Tyrrel, Sean F.; Seymour, I.; Harris, Jim A.The evaluation of two waste-derived materials used to treat compost leachate by biofiltration is described in this paper. Nine biofilters were constructed using 240 l, high density polyethylene containers. Three containers were filled without compaction with 200 l of each of three types of filter media. Waste-derived filter media (compost and oversize) were compared to a mineral control (granite chips). The filters were fed with compost leachate from a typical green waste composting facility at hydraulic loading rates ranging from 0.05 m3/m3/day to 0.5 m3/m3/day over a period of twelve months. The oversize medium emerged as the most effective demonstrating characteristics of consistency of effluent quality and resilience to stress. The oversize medium produced an effluent of <10 mg/l ammoniacal nitrogen on >95% of sampling occasions. The organic component of compost leachate was dominated by compounds that proved to be recalcitrant to biodegradation. The solids content of the treated effluent remained too high to be acceptable for direct discharge to a watercourse without further treatment and if discharge to a watercourse is to be considered, a polishing stage (e.g., reed bed) able to remove solids and dampen occasional peaks of ammoniacal nitrogen should be employed.Item Open Access The challenges, uncertainties and opportunities of bioaerosol dispersion modelling from open composting facilities(WIT Press, 2017-08-06) Williams, Ben; Hayes, Enda; Nasir, Zaheer A.; Rolph, Catherine A.; Jackson, Simon; Khera, Shagun; Bennett, Alan; Gladding, Toni; Drew, Gillian H.; Tyrrel, Sean F.Bioaerosols are ubiquitous organic particles that comprise viruses, bacteria and coarser fractions of organic matter. Known to adversely affect human health, the impact of bioaerosols on a population often manifests as outbreaks of illnesses such as Legionnaires Disease and Q fever, although the concentrations and environmental conditions in which these impacts occur are not well understood. Bioaerosol concentrations vary from source to source, but specific human activities such as water treatment, intensive agriculture and composting facilitate the generation of bioaerosol concentrations many times higher than natural background levels. Bioaerosols are not considered ‘traditional’ pollutants in the same way as PM10, PM2.5, and gases such as NO2, and consequently dispersion models do not include a bespoke method for their assessment. As identified in previous studies, priority areas for improving the robustness of these dispersion models include: 1) the development of bespoke monitoring studies designed to generate accurate modelling input data; 2) the publication of a robust emissions inventory; 3) a code of practice to provide guidelines for consistent bioaerosol modelling practices; and 4) a greater understanding of background bioaerosol emissions. The aim of this research project, funded by the Natural Environmental Research Council (NERC), is to address these key areas through a better understanding of the generation, concentration and potential dispersion of bioaerosols from intensive agricultural and biowaste facilities, using case studies developed at specific locations within the UK. The objective is to further refine existing bioaerosol monitoring and modelling guidelines to provide a more robust framework for regulating authorities and site operators. This contribution outlines the gaps that hinder robust dispersion modelling, and describes the on-site bioaerosol data collection methods used in the study, explaining how they might be used to close these gaps. Examples of bioaerosol dispersion modelled using ADMS 5 are presented and discussed.Item Open Access Characterisation and control of the biosolids storage environment: Implications for E. coli dynamics(Elsevier, 2020-08-15) Fane, Sarah Elizabeth; Nocker, Andreas; Vale, Peter; Rivas Casado, Monica; Cartmell, Elise; Harris, Jim A.; Bajón Fernández, Yadira; Tyrrel, Sean F.E. coli survival in biosolids storage may present a risk of non-compliance with guidelines designed to ensure a quality product safe for agricultural use. The storage environment may affect E. coli survival but presently, storage characteristics are not well profiled. Typically biosolids storage environments are not actively controlled or monitored to support increased product quality or improved microbial compliance. This two-phased study aimed to identify the environmental factors that control bacterial concentrations through a long term, controlled monitoring study (phase 1) and a field-scale demonstration trial modifying precursors to bacterial growth (phase 2). Digested and dewatered biosolids were stored in operational-scale stockpiles to elucidate factors controlling E. coli dynamics. E. coli concentrations, stockpile dry solids, temperature, redox and ambient weather data were monitored. Results from ANCOVA analysis showed statistically significant (p < 0.05) E. coli reductions across storage periods with greater die-off in summer months. Stockpile temperature had a statistically significant effect on E. coli survival. A 4.5 Log reduction was measured in summer (maximum temperature 31 °C). In the phase 2 modification trials, covered stockpiles were able to maintain a temperature >25 °C for a 28 day period and achieved a 3.7 Log E. coli reduction. In winter months E. coli suppression was limited with concentrations >6 Log10 CFU g−1 DS maintained. The ANCOVA analysis has identified the significant role that physical environmental factors, such as stockpile temperature, has on E. coli dynamics and the opportunities for controlItem Open Access Comparison of a novel enzymatic biodegradability test method with microbial degradation methods(2008-01-01T00:00:00Z) Wagland, Stuart Thomas; Godley, Andrew R.; Frederickson, Jim; Tyrrel, Sean F.; Smith, RichardA novel enzymatic hydrolysis test (EHT) has been evaluated as a surrogate for conventional microbial biodegradability methods, using 37 assorted organic waste samples collected from diverse sources. The results of the EHT method are compared with those obtained from two conventional tests; the 4 day aerobic DR4 and 100 day anaerobic BM100 test methods currently applied in England and Wales. The EHT is based on the enzymatic hydrolysis of cellulosic materials and can be completed in less than 24 hours. Linear regression for 37 samples against the BM100 data showed the DR4 provided a correlation coefficient of r = 0.58; the EHT method gave a correlation of r = 0.62 for the total DOC release; and r = 0.77 for the DOC released from enzymatic hydrolysis. The correlations suggest that the EHT method may be better suited to a wider range of waste types when correlating with anaerobic BM100 test results since it more closely mimics the full extent of decomposition rather than that from the readily biodegradable fraction.Item Open Access Compost liquor bioremediation using waste materials as biofiltration media.(Elsevier, 2005-03) Savage, A. J.; Tyrrel, Sean F.Compost liquor results from the percolation of precipitation through composting waste; the release of liquids from high moisture content feedstocks; and as a result of runoff from hard surfaces and machinery. This research aimed to establish the potential for waste materials to act as media for low-cost compost liquor biofilters. Six types of potential biofilter media were packed into experimental biofilters (1 m long x 0.11 m diameter) and irrigated with compost liquor (organic loading rate of 0.6 kg/m3/d) for three months. The pH, BOD5, NH3/NH4+, and phytotoxicity of the effluent was monitored regularly. Natural, organic materials (oversize, compost and wood mulch) performed best, when compared to synthetic materials such as polystyrene packaging or inert materials such as broken brick. On average, the best media achieved 78% removal of both BOD5 and ammoniacal nitrogen during the study period. Although significant improvements in liquor quality were achieved, the effluent remained heavily polluted.Item Open Access Concentration and composition of bioaerosol emissions from intensive farms: pig and poultry livestock(Elsevier, 2020-07-14) Gladding, T. L.; Rolph, Catherine A.; Gwyther, C. L.; Kinnersley, R.; Walsh, K.; Tyrrel, Sean F.Intensive farming is widespread throughout the UK and yet the health effects of bioaerosols which may be generated by these sites are currently not well researched. A scoping study was established to measure bioaerosols emitted from intensive pig (n = 3) and poultry farms (n = 3) during the period 2014–2015. The concentration of culturable mesophilic bacteria, Gram-negative bacteria, Staphylococcus spp., and fungi selecting for presumptive Aspergillus fumigatus were measured using single-stage impaction Andersen samplers, whilst endotoxin and (1 → 3)-β-D-glucan was undertaken using inhalable personal samplers. Particulate matter concentration was determined using an optical particulate monitor. Results showed that culturable bacteria, fungi, presumptive Staphylococcus aureus (confirmed only as Staphylococcus spp.) and endotoxin concentrations were elevated above background concentrations for distances of up to 250 m downwind of the source. Of all the culturable bioaerosols measured, bacteria and Staphylococcus spp. were identified as the most significant, exceeding published or proposed bioaerosol guidelines in the UK. In particular, culturable Staphylococcus spp. downwind was at least 61 times higher than background at the boundary and at least 8 times higher 70m downwind on the four farms tested. This research represents a novel dataset of intensive farm emissions within the UK. Future research should exploit the use of innovative culture-independent methods such as next generation sequencing to develop deeper insights into the make-up of microbial communities emitted from intensive farming facilities and which would better inform species of interest from a public health perspectiveItem Open Access Development and application of an Enzymatic Hydrolysis test to assess the biodegradability of organic waste material(2007-10-01T00:00:00Z) Wagland, Stuart Thomas; Smith, Richard; Godley, Andrew R.; Tyrrel, Sean F.; Blakey, N.A novel and rapid biodegradability test method has been developed based on the enzymatic hydrolysis of cellulose. The test method consists of three phases, in which the first two phases consist of the pH buffer addition, and then autoclaving of the mixture and the final phase is the addition of the enzyme mixture and incubation. An initial investigation was carried out to determine the optimum conditions for the enzymes using standard commercial cellulose as the substrate. The optimised test was then applied to a wide range of organic waste samples including untreated and treated MSW derived mixed BMW, and specific wastes such as waste wood, packaging waste (cardboard), turkey feathers and green waste. The DOC released by enzymatic hydrolysis indicates that this could give an indication of the sample biodegradability. However the DOC released in phases 1 and 2 may also contain some biodegradable components (depending on the extent of biological treatment applied to the waste sample) and these would need to be differentiated from the non-biodegradable DOC and used together with the DOC from phase 3 to give the best possible biodegradability indication.Item Open Access The effect of incorporating slurries on the transport of faecal coliforms in overland flow.(Blackwell Publishing Ltd., 2003) Quinton, John Norman; Tyrrel, Sean F.; Ramos, María C.Rainfall simulation experiments on a laboratory soil flume were conducted to test the hypothesis that the incorporation of slurry into the soil would reduce bacterial transport in overland flow. Presumptive faecal coliform (PFCs) concentrations were higher in the runoff from the surface applied treatment than from the incorporated treatments. The transport of PFCs and organic sediment were strongly correlated, with values of r ranging from 0.72 to 0.91.Item Open Access The effect of organic loading rate on foam initiation during mesophilic anaerobic digestion of municipal wastewater sludge(Elsevier Science B.V., Amsterdam., 2011-06-30T00:00:00Z) Ganidi, Nafsika; Tyrrel, Sean F.; Cartmell, EliseThe impact of increasing organic load on anaerobic digestion foaming was studied at both full and bench scale. Organic loadings of 1.25, 2.5 and 5 kg VS m(-3) were applied to bench-scale digesters. Foaming was monitored at a full scale digester operated in a comparable organic loading range over 15 months. The bench scale batch studies identified 2.5 kg VS m(-3) as a critical threshold for foam initiation while 5 kg VS m(-3) resulted in persistent foaming. Investigation of a full scale foaming event corroborated the laboratory observation that foaming may be initiated at a loading rate of 2.5 kg VS m(-3). Experimental findings on foam composition and differences in the quality characteristics between foaming and non-foaming sludges indicated that foam initiation derived from the combined effect of the liquid and gas phases inside a digester and that the solids/biomass ultimately stabilized foaming. (C) 2011 Elsevier Ltd. All rights reserved.Item Open Access Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms.(Elsevier, 2006-01) Ramos, María C.; Quinton, John Norman; Tyrrel, Sean F.The large quantities of slurry and manure that are produced annually in many areas in which cattle are raised could be an important source of organic matter and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are analysed. Rainfall simulations at a rate of 70 mm h−1 were conducted in a sandy loam soil packed into soil flumes (2.5 m long×1 m wide) at a bulk density of 1400 kg m−3, with and without cattle slurry manure applied on the surface. For each simulation, sediment and runoff rates were analysed and in those simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils, reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies an important source of pollution for surface waters especially if rainfall takes place within a short period after application. The concentrations of micro-organisms (presumptive faecal coliforms (PFCs)) found in water runoff ranged from 1.9×104 to 1.1×106 PFC 100 mL−1, depending on the initial concentration in the slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a strong relationship between the faecal coliforms transported by runoff and the organic matter in the sediment.Item Open Access Endotoxin emissions from commercial composting activities(BioMed Central, 2009-12-21T00:00:00Z) Deacon, Lewis J.; Pankhurst, Louise J.; Liu, Jian; Drew, Gillian H.; Hayes, Enda T.; Jackson, Simon; Longhurst, James; Longhurst, Philip J.; Pollard, Simon J. T.; Tyrrel, Sean F.This paper describes an exploratory study of endotoxin emissions and dispersal from a commercial composting facility. Replicated samples of air were taken by filtration at different locations around the facility on 10 occasions. Measurements were made of endotoxin and associated culturable microorganisms. The inflammatory response of cell cultures exposed to extracts from the filters was measured. Endotoxin was detected in elevated concentrations close to composting activities. A secondary peak, of lesser magnitude than the peak at source was detected at 100-150 m downwind of the site boundary. Unexpectedly high concentrations of endotoxin were measured at the most distant downwind sampling point. Extracted endotoxin was found to stimulate human monocytes and a human lung epithelial cell line to produce significant amounts of pro- inflammatory cytokines. On a weight basis, endotoxin extracted from the composting source has a greater inflammatory cytokine inducing effect than commercial E. coli endotoxin.Item Open Access Engineering difference: Matrix design determines community composition in wastewater treatment systems(Elsevier Science B.V., Amsterdam., 2012-03-01T00:00:00Z) Harris, Jim A.; Baptista, J. D. C.; Curtis, T. P.; Nelson, A. K.; Pawlett, Mark; Ritz, K.; Tyrrel, Sean F.There is a growing view that the application of ecological theory has the potential to facilitate a transition from a descriptive to a predictive framework in wastewater engineering. In this study we tested the hypotheses that: (i) it is possible to engineer consistent differences between microbial communities in wastewater treatment modules; (ii) there is a positive relationship between structural complexity and genetic diversity; (iii) such interactions are modulated by the availability of energy. We developed four treatment modules of increasingly complex support material (matrix) design, and pumped a synthetic wastewater through them for 16 weeks. We then disassembled the modules and assessed the phylogenetic (general eubacteria and ammonium diversity of the communities present on the support materials. We found that different genotypic and phenotypic community structures were reliably generated by the engineering of their physical environment in terms of structural complexity (as determined by particle size distribution and therefore pore size distribution). Furthermore, there was a notably consistent response of the phenotypic structure to such circumstances, and also to the presence of organic matter. However, we found no significant relationships between genetic diversity and structural complexity either for eubacterial or ammonia-oxidiser microbial groups. This work demonstrates that is it possible to engineer modules of differing microbial community composition by varying their physical complexity. This is an essential first step in testing relationships between system diversity and treatment resilience at a process level.oxidisers, by DGGE profiling) and phenotypic (by PLFA profiling)Item Open Access Estimation of particulate matter and gaseous concentrations using low-cost sensors from broiler houses(Springer Verlag, 2019-06-27) Yasmeen, Roheela; Nasir, Zaheer A.; Tyrrel, Sean F.Particulate and gaseous emissions from intensive poultry facilities are major public and environmental health concern. The present study was aimed at exploratively monitoring particulate matter (PM) and gaseous concentrations in controlled-environment facilities using low-cost sensors in Lahore, Pakistan. The indoors and outdoors of 18 broiler houses, grouped into three categories based on the age of birds: group I (1–20 days), group II (21–30 days) and group III (31–40 days), were examined. Low-cost sensors Dylos 1700 and Aeroqual 500 series with different gas sensor heads were used to monitor PM and different gases such as nitrogen dioxide (NO2), hydrogen sulphide (H2S), carbon dioxide (CO2) and methane (CH4), respectively. Overall, the mean PM and gaseous concentrations increased with the age and activity of birds as compared with the non-activity time of birds. Statistically significant differences were observed in all measured parameters among the groups. The negative correlation between indoor and outdoor environments for PM and gas concentrations at some broiler houses demonstrates the contribution of additional sources to emissions in outdoor environments. The findings contribute to our knowledge of temporal characteristics of particulate and gaseous concentrations from poultry facilities particularly in Pakistan and generally to the capability of using low-cost sensors to evaluate emissions from such facilities.Item Open Access An experimental investigation of the combustion performance of human faeces(Elsevier, 2016-07-27) Onabanjo, Tosin; Kolios, Athanasios; Patchigolla, Kumar; Wagland, Stuart Thomas; Fidalgo Fernandez, Beatriz; Jurado Pontes, Nelia; Hanak, Dawid P.; Manovic, Vasilije; Parker, Alison; McAdam, Ewan J.; Williams, Leon; Tyrrel, Sean F.; Cartmell, ElisePoor sanitation is one of the major hindrances to the global sustainable development goals. The Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation is set to develop affordable, next-generation sanitary systems that can ensure safe treatment and wide accessibility without compromise on sustainable use of natural resources and the environment. Energy recovery from human excreta is likely to be a cornerstone of future sustainable sanitary systems. Faeces combustion was investigated using a bench-scale downdraft combustor test rig, alongside with wood biomass and simulant faeces. Parameters such as air flow rate, fuel pellet size, bed height, and fuel ignition mode were varied to establish the combustion operating range of the test rig and the optimum conditions for converting the faecal biomass to energy. The experimental results show that the dry human faeces had a higher energy content (∼25 MJ/kg) than wood biomass. At equivalence ratio between 0.86 and 1.12, the combustion temperature and fuel burn rate ranged from 431 to 558 °C and 1.53 to 2.30 g/min respectively. Preliminary results for the simulant faeces show that a minimum combustion bed temperature of 600 ± 10 °C can handle faeces up to 60 wt.% moisture at optimum air-to-fuel ratio. Further investigation is required to establish the appropriate trade-off limits for drying and energy recovery, considering different stool types, moisture content and drying characteristics. This is important for the design and further development of a self-sustained energy conversion and recovery systems for the NMT and similar sanitary solutions.Item Open Access Faeces - Urine separation via settling and displacement: Prototype tests for a novel non-sewered sanitation system(Elsevier, 2020-08-23) Hennigs, Jan; Ravndal, Kristin T.; Parker, Alison; Collins, Matt; Jiang, Ying; Kolios, Athanasios J.; McAdam, Ewan; Williams, Leon; Tyrrel, Sean F.The development of novel, non-sewered sanitation systems like the Nano Membrane Toilet requires thorough investigation of processes that may seem well-understood. For example, unlike the settling of primary sludge, the separation of solids from liquids in a small-volume container at the scale of a household toilet has not been studied before. In two sets of experiments, the settling of real faeces and toilet paper in settling columns and the settling of synthetic faeces in a conical tank are investigated to understand the factors affecting the liquid quality for downstream treatment processes. Toilet paper is found to be a major inhibitor to settling of solids. While a lower overflow point results in better phase separation through displacement of liquid, a higher overflow point and frequent removal of solids may be more advantageous for the liquid qualityItem Open Access Field-scale evaluation of biosolids-derived organomineral fertilizers applied to winter wheat in England(American Society of Agronomy, 2017-02-23) Antille, Diogenes Luis; Godwin, Richard J.; Sakrabani, Ruben; Seneweerad, Saman; Tyrrel, Sean F.; Johnston, A. EdwardField-scale experiments in four crop seasons established the agronomic performance of biosolids-derived organomineral fertilizers (OMF) for winter wheat (Triticum aestivum L.) production in England. Two OMF formulations (OMF10 10:4:4 and OMF15 15:4:4) were compared with urea and biosolids granules (≈5:6:0.2) to determine crop responses and fertilizer effects on soil chemical properties. Fertilizers were applied at N rates between 0 and 250 kg ha–1 at regular increments of 50 kg ha–1 N. Average grain yields with OMF10 and OMF15 were higher than with biosolids granules, but lower than with urea (P < 0.05). The optimum N application rates, and corresponding grain yields, were 245 and 7900 kg ha–1 for biosolids, 257 and 9100 kg ha–1 for OMF10, 249 and 9500 kg ha–1 for OMF15, and 225 and 10350 kg ha–1 for urea, respectively. Differences in grain yield between fertilizer treatments were explained by differences in yield components, particularly number of grains and thousand-grain-weight. Grain-N recoveries were 31% for biosolids, ≈40% for OMF, and 52% for urea. Organomineral fertilizers-induced changes in soil extractable P and soil P Index were not significant. Thus, application of OMF replenished P offtake by the crop and therefore supported the choice of the proposed OMF formulations. By contrast, extractable P increased in biosolids and decreased in urea-treated soils, respectively. Heavy metals in soil were unaffected by fertilizer treatment and lower than permissible limit values. The use of OMF for winter wheat production appears to be a sustainable approach to recycling biosolids to land.
- «
- 1 (current)
- 2
- 3
- »