CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Towell, Marcie G."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Temporal changes in the extractability, bioaccessibility and biodegradation of target hydrocarbons in soils from former refinery facilities
    (Elsevier, 2021-04-22) Towell, Marcie G.; Vázquez-Cuevas, Gabriela M.; Bellarby, Jessica; Paton, Graeme I.; Pollard, Simon J. T.; Semple, Kirk T.
    This study investigated the extractability, bioaccessibility and biodegradation of 14C-phenanthrene and 14C-octacosane in two soils from former oil refinery facilities over 341 days. The impact of biostimulation and bioaugmentation treatments was also evaluated. At 0, 31, 62, 124 and 341 days, the loss and extractability (using dichloromethane, methanol:water and hydroxypropyl-β-cyclodextrin (HPCD)) of the 14C-hydrocarbons were measured. Further at each time point, the mineralisation of the 14C-hydrocarbons was measured respirometrically under the different conditions. In general, extractions with methanol: water and HPCD were similar for both hydrocarbons in the different treatments; however, these values were less that those measured with DCM. Overall, significantly higher (p ≤ 0.05) amounts of 14C-phenanthrene were lost, readily extracted and mineralised in the soils, with treatments having little impact upon the degradation of this hydrocarbon over 341 days. Conversely, bioaugmentation significantly increased the loss of 14C-octacosane residues from soils and sustained degradation after 31 days. Surprisingly, HPCD and methanol:water both under-predicted the extent to which the contaminants were degraded at each time point. Determining the likelihood of effective biodegradation by the stimulation of indigenous microorganisms or through bioaugmentation needs to be assessed by both chemical and biological measurements of bioaccessibility, rather than just by that which is totally extractable from soil. However, soils which have high loadings of organic matter and/or organic contaminants may prevent accurate assessment of contaminant bioaccessibility, as measured by HPCD.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback