CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tilford, Tim"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Multi-objective NSGA-II based shape optimisation of the cross-sectional shape of passively cooled heat sinks
    (Emerald, 2021-07-16) Santhanakrishnan, Mani Sekaran; Tilford, Tim; Bailey, Chris
    Purpose The purpose of the study is to optimise the cross-sectional shape of passively cooled horizontally mounted pin-fin heat sink for higher cooling performance and lower material usage. Design/methodology/approach Multi-objective shape optimisation technique is used to design the heat sink fins. Non-dominated sorting genetic algorithm (NSGA-II) is combined with a geometric module to develop the shape optimiser. High-fidelity computational fluid dynamics (CFD) is used to evaluate the design objectives. Separate optimisations are carried out to design the shape of bottom row fins and middle row fins of a pin-fin heat sink. Finally, a computational validation was conducted by generating a three-dimensional pin-fin heat sink using optimised fin cross sections and comparing its performance against the circular pin-fin heat sink with the same inter-fin spacing value. Findings Heat sink with optimised fin cross sections has 1.6% higher cooling effectiveness than circular pin-fin heat sink of same material volume, and has 10.3% higher cooling effectiveness than the pin-fin heat sink of same characteristics fin dimension. The special geometric features of optimised fins that resulted in superior performance are highlighted. Further, Pareto-optimal fronts for this multi-objective optimisation problem are obtained for different fin design scenarios. Originality/value For the first time, passively cooled heat sink’s cross-sectional shapes are optimised for different spatial arrangements, using NSGA-II-based shape optimiser, which makes use of CFD solver to evaluate the design objectives. The optimised, high-performance shapes will find direct application to cool power electronic equipment.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback